Advanced SearchSearch Tips
Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Biosystems Engineering
  • Volume 40, Issue 4,  2015, pp.373-393
  • Publisher : Korean Society for Agricultural Machinery
  • DOI : 10.5307/JBE.2015.40.4.373
 Title & Authors
Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering
Sinha, Arvind; Martin, Elizabeth M.; Lim, Ki-Taek; Carrier, Danielle Julie; Han, Haewook; Zharov, Vladimir P.; Kim, Jin-Woo;
  PDF(new window)
Background: Cellulose is a ubiquitous, renewable and environmentally friendly biopolymer, which has high promise to fulfil the rising demand for sustainable and biocompatible materials. Particularly, the recent progress in the synthesis of highly crystalline cellulose-based nanoscale biomaterials, namely cellulose nanocrystals (CNCs), draws significant attention from many research communities, ranging from bioresource engineering, to materials science and engineering, to biological and biomedical engineering to bionanotechnology. The feasibility of harnessing CNCs` unique biophysicochemical properties has inspired their basic and applied research, offering much promise for new biomaterials with diverse advanced functionalities. Purpose: This review focuses on vital issues and topics on the recent advances in CNC-based biomaterials with potential, in particular, for bionanotechnology and biological and biomedical engineering. The challenges and limitations of CNC technology are discussed as well as potential strategies to overcome them, providing an essential source of information in the exploration of possible and futuristic applications of the CNC-based functional "green" nanomaterials. Conclusion: CNCs offer exciting possibilities for advanced "green" nanomaterials, driving innovative research and development in a wide range of fields, including biological and biomedical engineering.
Biological engineering;Biomedical engineering;Bionanotechnology;Cellulose nanocrystal (CNC);Cellulose;Renewable bionanomaterial;
 Cited by
Advanced Cellulosic Materials for Treatment and Detection of Industrial Contaminants in Wastewater, ChemistrySelect, 2016, 1, 15, 4472  crossref(new windwow)
Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: a Review, BioEnergy Research, 2017, 10, 4, 1138  crossref(new windwow)
Internalization of (bis)phosphonate-modified cellulose nanocrystals by human osteoblast cells, Cellulose, 2017, 24, 10, 4235  crossref(new windwow)
Almeida, P. L., S. Kundu, J. P. Borges, M. H. Godinho and J. L. Figueirinhas. 2009. Electro-optical light scattering shutter using electrospun cellulose based nano and microfibers. Applied Physics Letters 95(4):043501-043504. crossref(new window)

Araki, J., M. Wada and S. Kuga. 2001. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21-27. crossref(new window)

Araki, J., M. Wada, S. Kuga and T. Okano. 2000. Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6):2413-2415. crossref(new window)

Aulin, C., S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Osterberg, et al. 2009. Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25(13):7675-7685. crossref(new window)

Barud, H. G. Oliveira., H. da S. Barud, M. Cavicchioli, et al. 2015. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers 128:41-51. crossref(new window)

Beck-Candanedo, S., M. Roman and D. G. Gray. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054. crossref(new window)

Bhattacharya, M., M. M Malinen, P. Lauren, Y.-R. Lou, S. W. Kuisma, L. Kanninen, et al. 2012. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Journal of Control Release 164(3):291-298. crossref(new window)

Bondeson, D. and K. Oksman. 2007. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Composite Interfaces 14(7-9):617-630. crossref(new window)

Boufi, S. 2014. Nanofibrillated cellulose: sustainable nanofiller with broad potentials use. In: Biomass and Bioenergy eds. K. R. Hakeem, M .Jawaid and U. Rashid, pp. 267-305. Springer International Publishing Switzerland.

Brinchi, L., F. Cotana, E. Fortunati and J. M. Kenny. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers 94(1):154-169. crossref(new window)

Cao, X., B. Ding, J. Yu and S. S. Al-Deyab. 2012. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydrate Polymer 90(2):1075-1080. crossref(new window)

Cao, X., H. Dong and C. M. Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899-904. crossref(new window)

Chang, C.-W. and M.-J. Wang. 2013. Preparation of microfibrillated cellulose composites for sustained release of $H_2O_2$ or $O_2$ for biomedical applications. ACS Sustainable Chemical Engineering 1(9):1129-1134. crossref(new window)

Chang, H., A.-T. Chien, H. C. Liu, P.-H. W. Wang, B. A. Newcomb and S. Kumar. 2015. Gel spinning of polyacrylonitrile/cellulose nanocrystal composite fibers. ACS Biomaterials Science & Engineering 1(7):610-616. crossref(new window)

Chawla, P. R., I. B. Bajaj, S. A. Survase and R. S. Singhal. 2009. Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology 47(2):107-124.

Chen, H. 2014. Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose: theory and practices, pp. 25-71. Springer Netherlands.

Chinga-Carrasco, G. 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letter 6(1):417. crossref(new window)

Cranston, E. D. and D. G. Gray. 2006. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522-2530. crossref(new window)

Dalton, L. R., P. A. Sullivan and D. H. Bale. 2010. Electric field poled organic electro-optic materials: State of the art and future prospects. Chemical Reviews 110(1):25-55. crossref(new window)

de la Zerda, A., J.-W. Kim, E. I. Galanzha, S. S. Gambhir and V. P. Zharov. 2011. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test, and photothermal theranostics. Contrast Media & Molecular Imaging 6:346-369 crossref(new window)

de Nooy, A. E. J., A. C. Besemer and H. van Bekkum. 1994. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recueil des Travaux Chimiques des Pays-Bas 113(3):165-166.

Domingues, R. M., M. E. Gomes and R. L. Reis. 2014. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327-2346. crossref(new window)

Dong, S. and M. Roman. 2007. Fluorescently labeled cellulose nanocrystals for bioimaging applications. Journal of American Chemical Society 129 (45):13810-13811. crossref(new window)

Duchesne L. C. and D. W. Larson. 1989. Cellulose and the evolution of plant life. BioScience 39(4):238-241. crossref(new window)

Dufresne, A. 2013. Nanocellulose: A new ageless bionanomaterial. Materials Today 16(6):220-227. crossref(new window)

Dugan, J. M., J. E. Gough and S. J. Eichhorn. 2010. Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498-2504. crossref(new window)

Dugan, J. M., R. F. Collins, J. E. Gough and S. J. Eichhorn. 2013. Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomaterialia 9(1):4707-4715. crossref(new window)

Ehrenberg, R. 2015. Global count reaches 3 trillion trees. Nature doi:10.1038/nature.2015.18287. crossref(new window)

Eichhorn S. J. and G. R. Davis. 2006. Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291-307. crossref(new window)

Fan, X., T. Zhang, Z. Zhao, H. Ren, Q. Zhang, Y. Yan and G. Lv. 2013. Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. Journal of Applied Polymer Science 129(2):595-603. crossref(new window)

Farr, T. D., C. H. Lai, D. Grünstein, G. Orts-Gil, C. Wang, P. Boehm-Sturm, P. H. Seeberger and C. Harms. 2014. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target seletin. Nano Letters 14(4):2130-2134. crossref(new window)

Frigell, J., I. Garcia, V. Gomez-Vallejo, J. Llop and S. Penades. 2014. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Journal of American Chemical Society 136(1):449-457. crossref(new window)

Gui, Z., H. Zhu, E. Gillette, X. Han, G. W. Rubloff, L. Hu and S. B. Lee. 2013. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037-6046. crossref(new window)

Habibi, Y., L. A. Lucia and O. J. Rojas. 2010. Cellulose nanocrystals: chemistry, self-assembly and applications. Chemical Review 110(6):3479-3500. crossref(new window)

Hanley, S. J., J. Giasson, J.-F. Revol and D. G. Gray. 1992. Atomic force microscopy of cellulose microfibrils: Comparison with transmission electron microscopy. Polymer 33(21):4639-4642. crossref(new window)

Hao, N., K. Neranon, O. Ramstrom and M. Yan. 2015. Glyconanomaterials for biosensing applications. Biosensorsand Bioelectronics. doi:10.1016/j.bios.2015.07.031. crossref(new window)

Hasani, M., E. D. Cranston, G. Westmana and D. G. Gray. 2008. Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238-2244. crossref(new window)

Hassan, M. L., C. M. Moorefield, H. S. Elbatal, G. R. Newkome, D. A. Modarelli and N. C. Romano. 2012. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Materials Science and Engineering: B 177(4):350-358. crossref(new window)

Heux, L., G. Chauve and C. Bonini. 2008. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16 (21):8210-8212.

Hubbe, M. A., O. J. Rojas, L. A. Lucia and M. Sain. 2008. Cellulosic nanocomposites: A review. BioResources 3(3):929-980.

Jackson, J. K., K. Letchford, B. Z. Wasserman, L. Ye, W. Y. Hamad and H. M. Burt. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine 6:321-330.

Jarvis, M. 2003. Cellulose stacks up. Nature 426:611-612. crossref(new window)

Jiang, F. and Y.-L. Hsieh. 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122:60-68. crossref(new window)

Jiang, F., S. Han and Y.-L. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3:12366-12375. crossref(new window)

John, M. J. and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71(3):343-364. crossref(new window)

Jokerst, J. V., D. Van de Sompel, S. E. Bohndiek and S. S. Gambhir. 2014. Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2(3):119-127. crossref(new window)

Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos. 2011. Cellulose based bio and nanocomposites: A review. International Journal of Polymer Science 2011:1-35.

Kaushik, M., K. Basu, C. Benoit, C. M. Cirtiu, H. Vali and A. Moores. 2015. Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. Journal of American Chemical Society 137(19):6124-6127. crossref(new window)

Keshk, S. M. A. S. 2014. Bacterial cellulose production and its industrial applications. Bioprocessing & Biotechniques 4(2):1-10.

Khalil, H. P. S. A., A. H. Bhat and A. F. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2):963-979. crossref(new window)

Khan, A., R. A. Khan, S. Salmieri, C . Le T ien, B. Riedl, J . Bouchard, G. Chauve, V. Tan, M. R. Kamal and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90(4):1601-1608. crossref(new window)

Kim, H. N., A. Jiao, N. S. Hwang, M. S. Kim, D. H. Kang, D.-H. Kim and K.-Y Suh. 2014. Emerging nanotechnology approaches in tissue engineering and regenerative medicine. International Journal of Nanomedicine. 9(S1):1-5. crossref(new window)

Kim, J., G. Montero, Y. Habibi, J. P. Hinestroza, J. Genzer, D. S. Argyropoulos and O. J. Rojas. 2009. Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering & Science 49(10):2054-2061. crossref(new window)

Kim, J. and S. Yun. 2006. Discovery of cellulose as a smart material. Macromolecules 39(12):4202-4206. crossref(new window)

Kim, J.-W. and R. Deaton. 2013. Molecular self-assembly of multifunctional nanoparticle composites with arbitary shapes and functions: Challenges and strategies. Particle and Particle Systems Characterization 30(2):117-132. crossref(new window)

Kim, J.-W. and S. Tung. 2015. Bio-hybrid micro/nanodevices powered by flagellar motor: Challenges and strategies. Frontiers in Bioengineering and Biotechnology 3:100. DOI: 10.3389/fbioe.2015.00100. crossref(new window)

Kim, J.-W., E. I. Galanzha and V. P. Zharov. 2014b. In. vivo photoacoustic detection of circulating cells and nanoparticles. In: Frontiers of Nanobiomedical Research-Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments. V. P. Torchilin (ed). World Scientific Publishing Co.

Kim, J.-W., E. I. Galanzha, D. A. Zaharoff, R. J. Griffin and V. P. Zharov. 2013. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Molecular Pharmaceutics 10(3):813-830. crossref(new window)

Kim, J.-W., J.-H. Kim and R. Deaton. 2011. DNA-linked nanoparticle building blocks for programmable matter. Angewandte Chemie International Edition 50(39):9185-9190. crossref(new window)

Kim, J.-W., J.-H. Kim and R. Deaton. 2012. Programmable construction of nanostructures: assembly of nanostructures with various components. IEEE Nanotechnology Magazine 6(1):19-23. crossref(new window)

Kimura, S. and T. Itoh. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194(3):151-163. crossref(new window)

Klemm, D., B. Heublein, H.-P. Fink and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44(22):3358- 3393. crossref(new window)

Klemm, D., D. Schumann, U. Udhardt and S. Marsch. 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science 26(9):1561-1603. crossref(new window)

Klemm, D., F. Kramer, S. Moritz, T. Lindstrm, M. Ankerfors, D. Gray and A. Dorris. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50(24):5438-5466. crossref(new window)

Kotagiri, N. and J.-W. Kim. 2014. Stealth nanotubes: Strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. International Journal of Nanomedicine 9(S1):85-105.

Kumbar, S. G., U. S. Toti, M. Deng, R. James, C. T. Laurencin, A. Aravamudhan and M. Harmon. 2011. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomedical Materials 6(6):065005. crossref(new window)

Kye, Y.-M., C. Kim and J. Lagerwall. 2015. Multifunctional responsive fibers produced by dual liquid crystal core electrospinning. Journal of Materials Chemistry C 3(34):8979-8985. crossref(new window)

Lagerwall, J. P. F., C. Schutz, M. Salajkova, J. H. Noh, J. H. Park, G. Scalia and L. Bergstrom. 2014. Cellulose nanocrystal-based materials: From liquid crystal selfassembly and glass formation to multifunctional thin films. NPG Asia Materials 6(e80):1-12.

Lalia, B. S., Y. A. Samad and R. Hashaikeh. 2013. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: Electrochemical and thermomechanical performance Journal of Solid State Electrochemistry 17(3):575-581. crossref(new window)

Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticlemodified nanocrystalline cellulose. Trends in Biotechnology 30(5):283-290. crossref(new window)

Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticlemodified nanocrystalline cellulose. Trends in Biotechnology 30(5):283-290. crossref(new window)

Lamaming, J., R. Hashim, C. P. Leh, O. Sulaiman, T. Sugimoto and M. Nasir. 2015. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydrate Polymers 134:534-540. crossref(new window)

Lavoine, N., I. Desloges, A. Dufresne and J. Bras. 2012. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90(1):735-764. crossref(new window)

Li, M.-C., Q. Wu, K. Song, Y. Qing and Y. Wu. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Applied Materials & Interfaces 7(8):5006-5016. crossref(new window)

Li, W., R. Guo, Y. Lan, Y. Zhang, W. Xue and Y. Zhang. 2014. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research Part A 102(4):1131-1139. crossref(new window)

Li, W., R. Wang and S. Liu. 2011. Nanocrystalline cellulose prepared from soft wood craft pulp via ultrasonicate assisted acid hydrolysis. BioResource 6(4):4271-4281.

Li, W., Y. Lan, R. Guo, Y. Zhang, W. Xue and Y. Zhang. 2014. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. Journal of Biomaterials Applications 29(6):882-893.

Li, W.-J., Y. J. Jiang and R. S. Tuan. 2008. Cell-nanofiberbased cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. Tissue Engineering Part A 14(5):639-648. crossref(new window)

Lima, M. M. de S. and R. Borsali. 2004. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications 25(7):771-787. crossref(new window)

Lindman, B., G. Karlstrom and L. Stigsson. 2010. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids 156(1):76-81. crossref(new window)

Lutolf, M. P. and J. A. Hubbell. 2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 23:47-55. crossref(new window)

Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66(3):506-577. crossref(new window)

Mallidi, S., G. P. Luke and S. Emelianov. 2011. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology 29(5):213-221. crossref(new window)

Marchessault, R. H., F. F. Morehead and N. M. Walter. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184:632-633. crossref(new window)

Mariano, M., N. E. Kissi and A. Dufresne. 2014. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science, Part B: Polymer Physics 52(2):791-806. crossref(new window)

Mastropietro, D. J., R. Nimroozi and H. Omidian. 2013. Rheology in pharmaceutical formulations a perspective. Journal of Developing Drugs 2(2):1-6.

Mihranyan, A. 2011. Cellulose from Cladophorales green algae: From environmental problem to high-tech composite materials. Journal of Applied Polymer Science 119(4):2449-2460. crossref(new window)

Mihranyan, A., A. P. Llagostera, R. Karmhag, M. Stromme and R. Ek. 2004. Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics 269(2):433-442. crossref(new window)

Miller, A. F. and A. M. Donald. 2003. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4(3):510-517. crossref(new window)

Mohammadkazemi, F., A. Mehrdad and A. Ashori. 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers 117:518-523. crossref(new window)

Mondragon, G., S. Fernandes, A. Retegi, C. Pena, I. Algar, A. Eceiza and A. Arbelaiz. 2014. A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products 55: 140-148. crossref(new window)

Moon, R. J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7):3941-3994. crossref(new window)

Morais, J. P. S., M. de F. Rosa, M. de sá M. de S. Filho, L. D. Nascimento, D. M. do Nascimento and A. R. Cassales. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers 91(1):229-235. crossref(new window)

Nair, S. S., J. Y. Zhu, Y. Deng and A. J. Ragauskas. 2014. High performance green barriers based on nanocellulose. Sustainable Chemical Processes 2(23):1-7. crossref(new window)

Nascimento, D. M., J. S. Almeida, A. F. Dias, M. C. B. Figueiredo, J. P. Morais, J. P. A. Feitosa and M. de F. Rosa. 2014. A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydrate Polymers 110:456-463. crossref(new window)

Neto, W. P. F., H. A. Silvério, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products 42:480-488. crossref(new window)

Nicolai, E. and R. D. Preston. 1952. cell wall studies in the Chlorophyceae. I. a general survey of submicroscopic structure in filamentous species. Proceedings of the Royal Society B 140(899):244-274. crossref(new window)

Ninan, N., M. Muthiah, I.-K. Park, A. Elain, S. Thomas and Y. Grohens. 2013. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydrate Polymers 98:877-885. crossref(new window)

Nishiyama, Y., P Langan, M. Wada and V. T. Forsyth. 2010. Looking at hydrogen bonds in cellulose. Acta Crystallographica section D 66(11):1172-1177. crossref(new window)