Advanced SearchSearch Tips
Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Biosystems Engineering
  • Volume 41, Issue 1,  2016, pp.51-59
  • Publisher : Korean Society for Agricultural Machinery
  • DOI : 10.5307/JBE.2016.41.1.051
 Title & Authors
Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy
Seo, Young-Wook; Ahn, Chi Kook; Lee, Hoonsoo; Park, Eunsoo; Mo, Changyeun; Cho, Byoung-Kwan;
  PDF(new window)
Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of (1400-2400 nm) and , respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and and derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.
FT-NIR spectroscopy;Non-destructive sorting;Pepper seeds;Raman spectroscopy;Viability;
 Cited by
Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging, Journal of the Science of Food and Agriculture, 2016  crossref(new windwow)
Ahn, C. K., B. K. Cho, J. S. Kang and K. J. Lee. 2012. Study on non-destructive sorting technique for lettuce (Lactuca sativa L) seed using Fourier transform near-infrared spectrometer. CNU Journal of Agricultural Science 39(1):111-116. crossref(new window)

Almeida, M. R., R. S. Alves, L. B. L. R. Nascimbem, R. Stephani, R. J. Poppi and L. F. C. Oliveira. 2010. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Analytical and Bioanalytical Chemistry 397:2693-2701. crossref(new window)

Ambrose, A., S. Lohumi, W. H. Lee and B. K. Cho. 2016. Comparative nondestructive measurement of corn seed viability using Fourier transform near-infrared (FT-NIR) and Raman spectroscopy. Sensors and Actuators B: Chemical, 224:500-506.

Baranski, R., M. Baranska, H. Schulz, P. W. Simon and T. Nothnagel. 2006. Single seed raman measurements allow taxonomical discrimination of apiaceae accessions collected in gene banks. Journal of polymers 81(6): 497-505.

Carlos, E. S., V. Peter, G. M. E. Howell and F. C. O. Luiz. 2008. NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehip. Analytical and Bioanalytical Chemistry 392(7-8): 1489-1496. crossref(new window)

Giunchi, A., A. Berardinelli, L. Ragni, A. Fabbri and F. A. Silaghi. 2008. Non-destructive freshness assessment of shell eggs using FT-NIR spectroscopy. Journal of Food Engineering 89(2):142-148. crossref(new window)

Hill, H. J., A. G. Taylor and T. G. Min. 1989. Density separation of imbibed and primed vegetable seeds. Journal of American Society for Horticultural Science 114(4): 661-665.

Hoy, D. J. and E. E. Gamble. 1985. The effect of seed size and seed density on germination and vigor in soybean (Glycin max(L.) Merr.). Canadian journal of plant science 65:1-8. crossref(new window)

Johan, A. W., C. J. H. Huub, S. Suzanne, J. V. Daniel, K. S. Age, J. J. V. Ewoud, P. M. D. John and A. D. Ferdi. 2008. Assessment of PLSDA cross validation. Metabolomics 4(1):81-89. crossref(new window)

Juan, A. F. P., A. Ouissam, D. Pierre and B. Vincent. 2011. Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics. Biotechnology, Agronomy, Society and Environment 15(1):75-84.

Kandpal, L. M., S. Lohumi, M. S. Kim, J. S. Kang and B. K. Cho. 2016. Near-Infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors and Actuators B: Chemical. 229(28):534-544.

Kang, J. S., B. G. Son, Y. W. Choi, Y. J. Lee, W. H. Joo, C. S. Lim and Y. H. Park. 2009. Effects of dehydration methods and storage conditions on germinability of pelleted carrot seeds. Journal of Life Science 19(4):526-531. crossref(new window)

Kang, J. S. and I. S. Choi. 2006. Leakage of seed reserve nutrient in artificially aged pepper seeds and enhancement of seed vigor by priming. Journal of Life Science 16(2):352-356. crossref(new window)

Li-Chan, E. C. Y. 1996. The applications of Raman spectroscopy in food science. Trends in Food Science and Technology 7(11):361-370. crossref(new window)

Lee, S. H., J. E. Park and B. M. Son. 2002. Simultaneous determination of tryptophan and tyrosine by spectrofluorimetry using multivariate calibration method. Journal of the Korean Chemical Society 46(4):309-316. crossref(new window)

Lieber, C. A. and A. Mahadevan-Jansen. Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy 57(11):1363-1367.

Min, T. G. and W. S. Kang. 2003. Nondestructive separation of viable and non-viable gourd (Lagenaria siceraria) seeds using single seed near infrared reflectance spectroscopy. Journal of Korean Society for Horticultural Science 44:545-548.

Min, T. G. and W. S. Kang. 2008. Nondestructive classification between normal and artificially aged corn (Zea mays L.) seeds using near infrared spectroscopy. Korean Journal of Crop Science 53:314-319.

Muhammad, M., M. Yamaguchi and M. E. Saltveit. 1998. Effect of Potassium Nutrition during Bell Pepper Seed Development on Vivipary and Endogenous Levels of Abscisic Acid(ABA). Journal of the American Society for Horticultural Science 123(5):925-930.

Nicola, B., P. Vincenza, B. Paola, S. Andrea, P. Amedeo and M. Adriano. 2005. Rapid detection of kernel rot and mycotoxins in maize by near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry. 53(21):8128-8134. crossref(new window)

Park, B., Y. Seo, S.-C. Yoon, H. A. Jr., W. R. Windham and K. C. Lawrence. 2015. Hyperspectral Microscope Imaging Methods to Classify Gram-Positive and Gram-Negative Foodborne Pathogenic Bacteria Transactions of the ASABE. 58:5-16.

Sebastian, R., R. Petra, A. S. Marion, B. Dorothea, B. Malgorzata, S. Hartwig, R. Eicke and P. Jurgen. 2007. Nondestructive analysis of single rapeseeds by means of raman spectroscopy. Journal of Raman Spectroscopy 38(3):301-308. crossref(new window)

Shetty, N., T. G. Min, M. H. Olesen and B. Boelt. 2011. Optimal sample size for predicting viability of cabbage and radish seeds based on near infrared spectra of single seeds. Journal of Near Infrared spectroscopy 19(6): 451-461. crossref(new window)

Smith, P. T. and B. G. Cobb. 1991. Accelerated germination of pepper seed by priming with salt solutions and water. HortScience. 26(4):417-419.

Saracco, F., R. J. Binoa, J. H. W. Bergervoet and S. Lanteri. 1995. Influence of priming-induced nuclear replication activity on storability of pepper (Capsicum annuum L.) seed. Seed Science Research. 5(1):25-29.

Taylor, A. G., McCarthy and E. M. Chirco. 1982. Density separation of seeds with hexane and chloroform. Journal of seed Technol. 7:78-83.

Teye, E., X. Huang, H. Dai and Q. Chen. 2013. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 114:183-189.