Advanced SearchSearch Tips
A Dielectrophoresis Microfluidic Device for Trapping Bioparticles at Low Voltage and Frequency
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Biosystems Engineering
  • Volume 41, Issue 1,  2016, pp.60-65
  • Publisher : Korean Society for Agricultural Machinery
  • DOI : 10.5307/JBE.2016.41.1.060
 Title & Authors
A Dielectrophoresis Microfluidic Device for Trapping Bioparticles at Low Voltage and Frequency
Jeong, Jin-Tae; Shin, Hyun-Min; Kim, Duwoon; Lee, Kyeong-Hwan;
  PDF(new window)
Purpose: The necessity for precise manipulation of bioparticles has greatly increased in the fields of bioscience, biomedical, and environmental monitoring. Dielectrophoresis (DEP) is considered to be an ideal technique to manipulate bioparticles. The objective of this study is to develop a DEP microfluidic device that can trap fluorescent beads, which mimic bioparticles, at the low voltage and frequency of the sinusoidal signal supplied to the microfluidic device. Methods: A DEP microfluidic device, which is composed of polydimethylsiloxane (PDMS) channels and interdigitated electrode networks, is fabricated to trap fluorescent beads. The geometry of the interdigitated electrodes is determined through computational simulation. To determine the optimum voltage and frequency of the sinusoidal signal supplied to the device, the experiments of trapping beads are conducted at various combinations of voltage and frequency. The performance of the DEP microfluidic device is evaluated by investigating the correlation between fluorescent intensities and bead concentrations. Results: The optimum ratio of the widths between the negative and positive electrodes was 1:4 () at a gap of between the two electrodes. The DEP electrode networks were fabricated based on this geometry and used for the bead trapping experiments. The optimum voltage and frequency of the supplied signal for trapping fluorescent beads were 15 V and 5 kHz, respectively. The fluorescent intensity of the trapped beads increased linearly as the bead concentration increased. The coefficient of determination () between the fluorescent intensity and the bead concentration was 0.989. Conclusions: It is concluded that the microfluidic device developed in this study is promising for trapping bioparticles, such as a cell or virus, if they are conjugated to beads, and their concentration is quantified.
Bead manipulation;Bioparticle;Dielectrophoresis (DEP);Fluorescent intensity;Microfluidic device;
 Cited by
Chen, A., T. Byvank, W. J. Chang, A. Bharde, G. Vieira, B. L. Miller, J. J. Chalmers, R. Bashir and R. Sooryakumar. 2013. On-chip magnetic separation and encapsulation of cells in droplets. Lab on a Chip 13(6):1172-1181. crossref(new window)

Das, D., K. Biswas and S. Das. 2014. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis. Medical Engineering & Physics 36(6):726-731. crossref(new window)

Hunt, T. P., D. Issadore and R. M. Westervelt. 2008. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab on a Chip 8(1):81-87. crossref(new window)

Khoshmanesh, K., S. Nahavandi, S. Baratchi, A. Mitchell and K. Kalantar-zadeh. 2011. Dielectrophoretic platforms for bio-microfluidic systems. Biosensors & Bioelectronics 26(5):1800-1814. crossref(new window)

Qian, C., H. B. Huang, L. G. Chen, X. P. Li, Z. B. Ge, T. Chen, Z. Yang and L. N. Sun. 2014. Dielectrophoresis for Bioparticle Manipulation. International Journal of Molecular Sciences 15(10):18281-18309. crossref(new window)

Qiu, Y. Q., H. Wang, C. E. M. Demore, D. A. Hughes, P. Glynne-Jones, S. Gebhardt, A. Bolhovitins, R. Poltarjonoks, K. Weijer, A. Schonecker, M. Hill and S. Cochran. 2014. Acoustic Devices for Particle and Cell Manipulation and Sensing. Sensors 14(8):14806-14838. crossref(new window)

Sajeesh, P. and A. K. Sen. 2014. Particle separation and sorting in microfluidic devices: a review. Microfluidics and Nanofluidics 17(1):1-52. crossref(new window)