Advanced SearchSearch Tips
Applications of Microfluidics in the Agro-Food Sector: A Review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Biosystems Engineering
  • Volume 41, Issue 2,  2016, pp.116-125
  • Publisher : Korean Society for Agricultural Machinery
  • DOI : 10.5307/JBE.2016.41.2.116
 Title & Authors
Applications of Microfluidics in the Agro-Food Sector: A Review
Kim, Giyoung; Lim, Jongguk; Mo, Changyeun;
  PDF(new window)
Background: Microfluidics is of considerable importance in food and agricultural industries. Microfluidics processes low volumes of fluids in channels with extremely small dimensions of tens of micrometers. It enables the miniaturization of analytical devices and reductions in cost and turnaround times. This allows automation, high-throughput analysis, and processing in food and agricultural applications. Purpose: This review aims to provide information on the applications of microfluidics in the agro-food sector to overcome limitations posed by conventional technologies. Results: Microfluidics contributes to medical diagnosis, biological analysis, drug discovery, chemical synthesis, biotechnology, gene sequencing, and ecology. Recently, the applications of microfluidics in food and agricultural industries have increased. A few examples of these applications include food safety analysis, food processing, and animal production. This study examines the fundamentals of microfluidics including fabrication, control, applications, and future trends of microfluidics in the agro-food sector. Conclusions: Future research efforts should focus on developing a small portable platform with modules for fluid handling, sample preparation, and signal detection electronics.
Animal monitoring;Environmental monitoring;Food safety;Food processing;Microfluidics;
 Cited by
Ensuring food safety: Quality monitoring using microfluidics, Trends in Food Science & Technology, 2017, 65, 10  crossref(new windwow)
Adami, A., A. Mortari, E. Morganti and L. Lorenzelli. 2016. Microfluidic sample preparation methods for the analysis of milk contaminants. Journal of Sensors 2016:2385267.

Ahmad, B., E. Stride and M. Edirisinghe. 2012. Calcium Alginate Foams Prepared by a Microfluidic T-Junction System: Stability and Food Applications. Food and Bioprocess Technology 5(7):2848-2857. crossref(new window)

Arevalo, F. J., A. M. Granero, H. Fernandez, J. Raba and M. A. Zon. 2011. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 83:966-973. crossref(new window)

Atalay, Y. T., S. Vermeir, D. Witters, N. Vergauwe, B. Verbruggen, P. Verboven, B. M. Nicolaï and J. Lammertyn. 2011. Microfluidic analytical systems for food analysis. Trends in Food Science & Technology 22:386-404. crossref(new window)

Babrak, L., A. Lin, L. H. Stanker, J. McGarvey and R. Hnasko. 2015. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins 8(1):13.

Bhatta, D., M. M. Villalba, C. L. Johnson, G. D. Emmerson, N. P. Ferris, D. P. King and C. R. Lowe. 2012. Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Procedia Chemistry 6:2-10. crossref(new window)

Becker, H. and C. Gartner. 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry 290:89-111.

Beyor, N., T. S. Seo, P. Liu and R. A. Mathies. 2008. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomedical Microdevices 10(6):909-917. crossref(new window)

Buchegger, W., C. Wagner, B. Lendl, M. Kraft and M. Vellekoop. 2011. A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluidics and Nanofluidics 10:889-897. crossref(new window)

Campbell, G. M. and E. Mougeot. 1999. Creation and characterization of aerated food products. Trends in Food Science & Technology 10:283-296. crossref(new window)

Chang, H. C. 2006. Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. The Canadian Journal of Chemical Engineering 84(2):146-160. crossref(new window)

Choudhury, D., D. van Noort, C. Iliescu, B. Zheng, K. L. Poon, S. Korzh, V. Korzh and H. Yu. 2012. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab on a Chip 12:892-900. crossref(new window)

Chen, J., D. Chen, Y. Xie, T. Yuan and X. Chen. 2013. Progress of Microfluidics for Biology and Medicine. Nano-Micro Letters 5(1):66-80. crossref(new window)

Choi, E., B. Kim and J. Park. 2009. High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering 19:125014. crossref(new window)

Cuadros, T. R., O. Skurtys and J. M. Aguilera. 2012. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydrate Polymers 89(4):1198-1206. crossref(new window)

Dong, Y., Y. Xu, Z. Liu, Y. Fu, T. Ohashi, Y. Tanaka, K. Mawatari and T. Kitamori. 2011. Rapid screening swine foot-and-mouth disease virus using micro-ELISA system. Lab on a Chip 11(13):2153-2155. crossref(new window)

Galarreta, B. C., M. Tabatabaei, V. Guieu, E. Peyrin and F. Lagugne-Labarthet. 2013. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Analytical and Bioanalytical Chemistry 405:1613-1621. crossref(new window)

Guo, L., J. Feng, Z. Fang, J. Xu and X. Lu. 2015. Application of microfluidic "lab-on-a-chip" for the detection of mycotoxins in foods. Trends in Food Science & Technology 46:252-263. crossref(new window)

Guo, Y., X. Liu, X. Sun, Y. Cao and X. Y. Wang. 2015. A PDMS microfluidic impedance immunosensor for sensitive detection of pesticide residues in vegetable real samples. International Journal of Electrochemical Science 10:4155-4164.

Hamon, M. O. A. Oyarzabal and J. W. Hong. 2013. Nanoliter/picoloter scale fluidic systems for food safety. In: Advances in applied nanotechnology for agriculture. eds. B. Park and M. Appell. pp. 145-165 Washington, DC: ACS.

He, B., B. J. Burke, X. Zhang, R. Zhang and F. E. Regnier. 2001. A picoliter-volume mixer for microfluidic analytical systems. Analytical Chemistry 73: 1942-1947. crossref(new window)

Hervas, M., M. A. Lopez and A.lberto Escarpa. 2009. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst 134:2405-2411. crossref(new window)

Hervas, M., M. A. Lopez and A.lberto Escarpa. 2011. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136: 2131-2138. crossref(new window)

Hu, H., Y. Deng and H. Zou. 2013. Microfluidic smectitepolymer nanocomposite strip sensor for aflatoxin detection. IEEE Sensors Journal 13:1835-1839. crossref(new window)

Huang, C. W., Y. T. Lin, S. T. Ding, L. L. Lo, P. H. Wang, E. C. Lin, F. W. Liu and Y. W. Lu. 2015. Efficient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. Microarrays 4:570-595. crossref(new window)

Karsunke, X. Y. Z. and R. Niessner. 2009. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. 2009. Analytical and Bioanalytical Chemistry 395:1623-1630. crossref(new window)

Kempisty, B., R. Walczak, P. Antosik, P. Sniadek, M. Rybska, H. Piotrowska, D. Bukowska, J. Dziuban, M. Nowicki, J. M. Jaskowski, M. Zabel and K. P. Brussow. 2014. Microfluidic Method of Pig Oocyte Quality Assessment in relation to Different Follicular Size Based on Lab-on-Chip Technology. BioMed Research International 2014:467063.

Laporte, M., A. Montillet, D. D. Valle, C. Loisel and A. Riaublanc. 2016. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput. Journal of Food Engineering 173:25-33. crossref(new window)

Lee, C. Y., C. L. Chang, Y. N. Wang and L. M. Fu. 2011. Microfluidic mixing: a review. International Journal of Molecular Sciences 12:3263-3287. crossref(new window)

Li, P., Z. Zhang, Q. Zhang, N., Zhang, W. Zhang, X. Ding and R. Li. 2012. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 33:2253-2265. crossref(new window)

Liu, R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe. 2000., Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical systems 9:190-197. crossref(new window)

Liu, R. H., R. Lenigk, S. R. L. Druyor, J. Yang and P. Grodzinski. 2003. Hybridization enhancement using cavitation microstreaming. Analytical Chemistry 75:1911-1917. crossref(new window)

Lliescu, C., H. Taylor, M. Avram, J. Miao and S. Franssila. 2012. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505. crossref(new window)

Luka, G., A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani and M. Hoorfar. 2015. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 15:30011-30031. crossref(new window)

Ma, R., L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang and J. Cheng. 2011. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and earlyembryo development. Analytical Chemistry 83(8):2964-2970. crossref(new window)

Mairhofer, J., K. Roppert and P. Ertl. 2009. Microfluidic systems for pathogen sensing: A review. Sensors 9:4804-4823. crossref(new window)

Mao, X. and T. J. Huang. 2012. Microfluidic diagnostics for the developing world. Lab on a Chip 12:1412-1416. crossref(new window)

Mark, D., S. Haeberle, G. Roth, F. Stetten and R. Zengerle. 2009. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews 39:1153-1182.

McGrath, J. S., J. Quist, J. R. T. Seddon, S. C. S. Lai, S. G. Lemay and H. L. Bridle. 2016. Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe. PLoS ONE 11(3):e0150438. crossref(new window)

Melin,J., G. Gimenez, N. Roxhed, W. van der Wijngaart and G. Stemme. 2004. A fast passive and planar liquid sample micromixer. Lab on a Chip 4:214-219. crossref(new window)

Neethirajan, S., I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal and F. Lin. 2011. Microfluidics for food, agriculture and biosystems industries. Lab on a Chip 11(9):1574-1586. crossref(new window)

Niu, X. and Y. K. Lee. 2003. Efficient spatial-temporal chaotic mixing in microchannels. Journal of Micromechanics and Microengineering 13:454-462. crossref(new window)

Novo, P., G. Moulas, D. M. F. Prazeres, V. Chu and J. P. Conde. 2013. Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B 176:232-240. crossref(new window)

Ramadan, Q. and M. A. M Gijs. 2012. Microfluidic applications of functionalized magnetic particles for environmental analysis: Focus on waterborne pathogen detection. Microfluidics and Nanofluidics 13(4):529-542. crossref(new window)

Santis, R. D., A. Ciammaruconi, G. Faggioni, S. Fillo, B. Gentile, E. D. Giannatale, M. Ancora and F. Lista. 2011. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiology 11:60. crossref(new window)

Sekhon, B. S.. 2012. Nanoprobes and their applications in veterinary medicine and animal health. Research Journal of Nanoscience and Nanotechnology 2(1):1-16.

Skurtys, O. and J. M. Aguilera. 2008. Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3(1):1-15. crossref(new window)

Tan, F., P. H. M. Leung, Z. B. Liu, Y. Zhang, L. D. Xiao, W. W. Ye, X. Zhang, L. Yi and M. Yang. 2011. A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibodyimmobilized nanoporous membrane. Sensors and Actuators B 159:328-335. crossref(new window)

Tetala, K. K., J. W. Swarts, B. Chen, A. E. Janssen and T. A. van Beek. 2009. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab on a Chip 9(14):2085-92. crossref(new window)

Varshney, M., Y. Li, B. Srinivasan and S. Tung. 2007. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B 128:99-107. crossref(new window)

Vijayendran, R. A., K. M. Motsegood, D. J. Beebe and D. E. Leckband. 2003. Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824-1828. crossref(new window)

Wang, S. Q., F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. C. F. Lp, B. Sridharan, U. A. Gurkan and U. Demirci. 2012. Portable microfluidic chip for detection of Escherichia coli in produce and blood. International Journal of Nanomedicine 7:2591-2600.

Whitesides, G. M.. 2006. The origins and the future of microfluidics. Nature 442(7101):368-373. crossref(new window)

Wielhouwer, E. M., S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, J. Westerweel, J. Oonk, E. X. Vrouwe, W. Buesink, H. G. J. vanMil, J. Chicken, R. van't Oever and M. K. Richardson. 2011. Zebrafish embryo development in a microfluidic flow-through system. Lab on a Chip 11:1815-1824. crossref(new window)

Xia, Y., and G. M. Whitesides. 1998. Soft Lithography. Angewandte Chemie International Edition in English 37(5):551-575.

Yamaguchi, N., M. Torii, Y. Uebayashi and M. Nasu. 2011. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting. Applied and Environmental Microbiology 77(4):1536-1539. crossref(new window)

Yang, M., S. Sun, Y. Kostov and A. Rasooly. 2010. Lab-on-achip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab on a Chip 10:1011-1017. crossref(new window)

Yaralioglu, G. G., I. O. Wygant, T. C. Marentis and T. Khuri-Yakub. 2004. Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical Chemistry 76:3694-3698. crossref(new window)

Zhang, R. Q., S. L. Liu, W. Zhao, W. P. Zhang, X. Yu, Y. Li, A. J. Li, D. W. Pang and Z. L. Zhang. 2013. A Simple Pointof-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry 85(5):2645-2651. crossref(new window)

Zhao, C. and C. Yang. 2011. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 32:629-637. crossref(new window)