JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet
Peng, Guoyi; Okada, Kunihiro; Yang, Congxin; Oguma, Yasuyuki; Shimizu, Seiji;
  PDF(new window)
 Abstract
Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}
 Keywords
Submerged water jet;cavitation;bubble dynamics;two-phase flow;computational fluid dynamics;
 Language
English
 Cited by
 References
1.
Shimizu, S. and Peng, G., 2009, Water jetting technology for LOHAS, Int. Academic Printing Co. Ltd., Tokyo.

2.
Soyama, H. et al., 1996, "High-speed observation of ultrahigh-speed submerged water jets," Experimental Thermal and Fluid Science, Vol. 12, pp.411-416. crossref(new window)

3.
Sato, K., Taguchi, Y., and Hayashi S., 2013, "High speed observation of periodic cavity behavior in a convergent-divergent nozzle for cavitating water jet," J. Flow Control, Measurement & Visualization, Vol. 1, pp.102-107. crossref(new window)

4.
Peng, G., Masuda, K., Shimizu, S., 2013, "Characteristics of cavitating water jet issuing from a sheathed orifice nozzle," Proc. FLUCOME 2013, No. OS7-01-3, pp.1-8.

5.
Peng, G. and Shimizu, S., 2013, "Progress in numerical simulation of cavitating water jets," J. Hydrodynamics, Vol. 25, No.4, pp.502-509. crossref(new window)

6.
Iga, Y. et al., 2003, "Numerical study of sheet cavitation breakoff phenomenon on a cascade hydrofoil," J. Fluids Eng., Vol. 125(4), pp.643-651. crossref(new window)

7.
Huang, B, Young, Y. L., Wang G. and Shyy W., 2013, "Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation," J. Fluids Eng., Vol. 135(7), 071301-1. crossref(new window)

8.
Qin, Z., Bremhorst, K., and Alehossein, H., 2007, "Simulation of cavitation bubbles in a convergent-divergent nozzle water jet," J. Fluid Mechanics, Vol. 573, pp.1-25. crossref(new window)

9.
Iga, Y. and Konno, T., 2012, "Numerical analysis of the influence of acceleration on cavitation instabilities that arise in cascade," Int. J. Fluid Machinery and Systems, Vol. 5 (1), p. 1-9. crossref(new window)

10.
Peng, G., Shimizu, S., and Fujikawa, S., 2011, "Numerical simulation of cavitating water jet by a compressible mixture flow method," J. Fluid Science and Technology, Vol. 6(4), pp.499-509. crossref(new window)

11.
Tran, T. D., Nennemann, B., Vu, T. C. and Guibault, F., 2015, "Investigation of cavitation models for steady and unsteady cavitating flow simulation," Int. J. Fluid Machinery and Systems, Vol. 8 (4), pp. 240-253. crossref(new window)

12.
Singhal A. K., Athavale, M. M., Li, H and Jiang, Y., 2002, "Mathematical basis and validation of the full cavitation model," J. Fluids Eng. Vol. 124(3), pp.617-24. crossref(new window)

13.
Beattie, D. and Whally, P., 1982, "A simple two-phase frictional pressure drop calculation method," Int. J. Multiphase Flow, Vol.8, pp.83-87. crossref(new window)

14.
Wilcox, D. C., 2002, Turbulence modeling for CFD, 2nd ed. DCW Industries, California.

15.
Coutier-Delgosha, O., Fortes-Patella, R., and Reboud, J. L., 2003, "Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitations," J. Fluids Eng., 125(1), pp.38-45. crossref(new window)

16.
Craft, T. J., Gerasimov, A. V., Iacovides, H., 2002, "Progress in the generalization of wall-function treatments," Int. J. Heat & Fluid Flow. Vol. 23(2), pp.148-160. crossref(new window)

17.
Ito, H., Peng, G. and Shimizu, S., 2011, "Submerged abrasive suspension jets issuing from sheathed nozzle with ventilation," Proc. 2011 WJTA-IMCA Conference and Expo, Paper E2.

18.
Ito, H., Peng, G. and Shimizu, S., 2013, "Submerged cutting by air coated abrasive suspension jet (in Japanese)," Trans. Japan Society of Mech. Engr. (B), Vol. 79 (797), pp.61-70. crossref(new window)