JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Characteristics of Amorphous TiAl by P/M Processing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Characteristics of Amorphous TiAl by P/M Processing
Han, Chang-Suk; Jeon, Seung-Jin;
  PDF(new window)
 Abstract
The P/M processing of titanium aluminide using amorphous TiAl is developed by which it is possible to overcome inherent fabricability problems and to obtain a fine microstructure. A high quality amorphous TiAl powder produced by reaction ball milling shows clear glass transition far below a temperature at the onset of crystallization in differential scanning calorimetry above a heating rate of 0.05 K/s. We obtained a fully dense compact of amorphous TiAl powders, encapsulated in a vacuumed can, via viscous flow by hot isostatic pressing (HIP). Isothermally annealing of HIP`ed amorphous compact under a pressure of 196 MPa shows a progressive growth of phase with (), which is characterized by increasing sharpness of X-ray peaks with temperature. Fully dense HIP`ed compact of titanium aluminide TiAl shows a high hardness of 505 Hv, suggesting strengthening mechanisms by sub-micron sized grain of and particle-dispersion by second phase constituent, .
 Keywords
P/M processing;Titanium aluminide;Reaction ball milling;Crystallization;particle-dispersion;
 Language
English
 Cited by
1.
Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al,;;;

한국재료학회지, 2016. vol.26. 12, pp.709-713 crossref(new window)
1.
Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al, Korean Journal of Materials Research, 2016, 26, 12, 709  crossref(new windwow)
 References
1.
T. Kawabata, T. Kanai and O. Izumi : Acta Metall., 33 (1985) 1355. crossref(new window)

2.
W. Liang and D. Yang : Acta Metall. Sinica, 34 (1998) 597.

3.
M. Zupan and K. J. Hemker : Mater. Sci. & Eng., 319 (2001) 810.

4.
C. S. Han, J. Kor. Soc. Heat Treat., 18 (2005) 281.

5.
C. S. Han and K. W. Koo : Kor. J. Mater. Res., 18 (2008) 51. crossref(new window)

6.
T. Khan, P. Caron and S. Naka : High Temperature Aluminides and Intermetallics, Ed. by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler, TMS, Warrendahle, (1990) 219.

7.
M. V. Nathal : Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, Ed. by C. T. Liu, R. W. Cahn and G. Sauthoff, NATO ASI Series E, Kluwer Academic Publ., Dordrecht, 213 (1992) 541.

8.
S. H. Kim, M. C. Kim, M. H. Oh and D. M. Wee : J. Kor. Inst. Met. & Mater., 39 (2001) 731.

9.
R. T. Zheng, Y. G. Zhang, C. Q. Chen and G. A. Cheng : Mater. Sci. & Eng., A, 362 (2003) 192. crossref(new window)

10.
S. Romankov, W. Sha, S. D. Kaloshkin and K. Kaevitser : Surf. & Coat. Tech., 201 (2006) 3235. crossref(new window)

11.
C. Suryanarayana : J. Alloys and Comp., 509 (2011) S229. crossref(new window)

12.
K. Fantao, Y. Hongbao and C. Yuyong : Rare Met. Mater. & Eng., 34 (2005) 446.

13.
H. Bahmanpour and S. Heshmati-Manesh : Inter. J. Mod. Phys., B, 22 (2008) 2933. crossref(new window)

14.
C. S. Han and J. Y. Nam : J. Res. Inst. Eng. & Tech., 34 (2015) 21.

15.
O. N. Senkov, M. L. Övecoglu, N. Srisukhumbowornchai and F. H. Froes : Nanostructured Mater., 10 (1998) 935. crossref(new window)

16.
H. Sugimoto, K. Ameyama, T. Inaba and M. Tokizane : J. Jpn. Inst. Met., 53 (1989) 628. crossref(new window)

17.
D. L. Zhang, H. B. Yu and Y. Y. Chen : Mater. Sci. forum, 683 (2011) 149.

18.
K. P. Rao, Y. V. Prasad and K. Suresh : Mater. & Design, 32 (2011) 4874. crossref(new window)

19.
A. G. Adams, M. N. Rahaman and R. E. Dutton : Mater. Sci. & Eng. properties, microstructure and processing. A, 477 (2008) 137. crossref(new window)