JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Remote Sensing
  • Volume 32, Issue 1,  2016, pp.25-38
  • Publisher : The Korean Society of Remote Sensing
  • DOI : 10.7780/kjrs.2016.32.1.3
 Title & Authors
Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data
Lee, Hwa-Seon; Lee, Kyu-Sung;
  PDF(new window)
 Abstract
With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.
 Keywords
GOCI;geostationary satellite;temporal resolution;cloud-free composite;NDVI;COMS;
 Language
English
 Cited by
 References
1.
Ackerman, S.A., K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, and L.E. Gumley, 1998. Discriminating clear sky from clouds with MODIS, Journal of Geophysical Research: Atmospheres (1984-2012), 103(D24): 32141-32157.

2.
Ahl, D.E., S.T. Gower, S.N. Burrows, N.V. Shabanov, R.B. Myneni, and Y. Knyazikhin, 2006. Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS, Remote Sensing of Environment, 104(1): 88-95. crossref(new window)

3.
Ahn, J., Y. Park, J. Ryu, and B. Lee, 2012. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI), Ocean Science Journal, 47(3): 247-259. crossref(new window)

4.
Ali, A., C. de Bie, and A.K. Skidmore, 2013. Detecting long-duration cloud contamination in hypertemporal NDVI imagery, International Journal of Applied Earth Observation and Geoinformation, 24: 22-31. crossref(new window)

5.
Amraoui, M., C. DaCamara, and J. Pereira, 2010. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery, Remote Sensing of Environment, 114(5): 1038-1052. crossref(new window)

6.
Chen, P., R. Srinivasan, G. Fedosejevs, and J. Kiniry, 2003. Evaluating different NDVI composite techniques using NOAA-14 AVHRR data, International Journal of Remote Sensing, 24(17): 3403-3412. crossref(new window)

7.
Chuvieco, E., G. Ventura, M.P. Martin, and I. Gomez, 2005. Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping, Remote Sensing of Environment, 94(4): 450-462. crossref(new window)

8.
Cracknell, A.P., 2001. The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended, Advances in Space Research, 28(1): 233-240. crossref(new window)

9.
El Saleous, N., E. Vermote, C. Justice, J. Townshend, C. Tucker, and S. Goward, 2000. Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR), International Journal of Remote Sensing, 21(6-7): 1251-1277. crossref(new window)

10.
Fensholt, R., A. Anyamba, S. Huber, S.R. Proud, C.J. Tucker, J. Small, E. Pak, M.O. Rasmussen, I. Sandholt, and C. Shisanya, 2011. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar Operational Environmental Satellite data for land surface monitoring in Africa, International Journal of Applied Earth Observation and Geoinformation, 13(5): 721-729. crossref(new window)

11.
Fensholt, R., A. Anyamba, S. Stisen, I. Sandholt, E. Pak, and J. Small, 2007. Comparisons of compositing period length for vegetation index data from polar-orbiting and geostationary satellites for the cloud-prone region of West Africa, Photogrammetric Engineering & Remote Sensing, 73(3): 297-309. crossref(new window)

12.
Frey, R.A., S.A. Ackerman, Y. Liu, K.I. Strabala, H. Zhang, J.R. Key, and X. Wang, 2008. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5, Journal of Atmospheric and Oceanic Technology, 25(7): 1057-1072. crossref(new window)

13.
Gutman, G., and A. Ignatov, 1995. Global land monitoring from AVHRR: potential and limitations, International Journal of Remote Sensing, 16(13): 2301-2309. crossref(new window)

14.
Hagolle, O., M. Huc, D.V. Pascual, and G. Dedieu, 2010. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VEN${\mu}$S, LANDSAT and SENTINEL-2 images, Remote Sensing of Environment, 114(8): 1747-1755. crossref(new window)

15.
Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7(11): 1417-1434. crossref(new window)

16.
Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83(1): 195-213. crossref(new window)

17.
Huete, A., C. Justice, and W. Van Leeuwen, 1999. MODIS vegetation index (MOD13), Algorithm theoretical basis document, 3: 213.

18.
Jin, S., and S.A. Sader, 2005. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects, Remote Sensing of Environment, 99(4): 462-470. crossref(new window)

19.
Julien, Y., and J.A. Sobrino, 2010. Comparison of cloud-reconstruction methods for time series of composite NDVI data, Remote Sensing of Environment, 114(3): 618-625. crossref(new window)

20.
Justice, C.O., J. Townshend, B. Holben, and e.C. Tucker, 1985. Analysis of the phenology of global vegetation using meteorological satellite data, International Journal of Remote Sensing, 6(8): 1271-1318. crossref(new window)

21.
Kang, G., P. Coste, H. Youn, F. Faure, and S. Choi, 2010. An in-orbit radiometric calibration method of the geostationary ocean color imager, Geoscience and Remote Sensing, IEEE Transactions on, 48(12): 4322-4328. crossref(new window)

22.
Lamquin, N., C. Mazeran, D. Doxaran, J. Ryu, and Y. Park, 2012. Assessment of GOCI radiometric products using MERIS, MODIS and field measurements, Ocean Science Journal, 47(3): 287-311. crossref(new window)

23.
Lee, K., S. Park, S. Kim, H. Lee, and J. Shin, 2012. Radiometric characteristics of Geostationary Ocean Color Imager (GOCI) for land applications, Korean Journal of Remote Sensing, 28(3): 277-285. crossref(new window)

24.
Lee, H. and K. Lee, 2015. Development of cloud detection method with Geostationary Ocean Color Imagery for land applications, Korean Journal of Remote Sensing, 31(5): 371-384 (In Korean with English abstact). crossref(new window)

25.
Lee, W., J. Kudoh, and S. Makino, 2001. Cloud detection for the Far East region using NOAA AVHRR images, International Journal of Remote Sensing, 22(7): 1349-1360. crossref(new window)

26.
Maisongrande, P., B. Duchemin, and G. Dedieu, 2004. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products, International Journal of Remote Sensing, 25(1): 9-14. crossref(new window)

27.
Muraoka, H., and H. Koizumi, 2009. Satellite Ecology (SATECO) linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function, Journal of Plant Research, 122(1): 3-20.

28.
Nigam, R., B.K. Bhattacharya, K.R. Gunjal, N. Padmanabhan, and N. Patel, 2012. Formulation of time series vegetation index from Indian geostationary satellite and comparison with global product, Journal of the Indian Society of Remote Sensing, 40(1): 1-9. crossref(new window)

29.
Platnick, S., M.D. King, S. Ackerman, W.P. Menzel, B. Baum, J.C. Riedi, and R. Frey, 2003. The MODIS cloud products: Algorithms and examples from Terra, Geoscience and Remote Sensing, IEEE Transactions on, 41(2): 459-473. crossref(new window)

30.
Proud, S.R., R. Fensholt, L.V. Rasmussen, and I. Sandholt, 2011. Rapid response flood detection using the MSG geostationary satellite, International Journal of Applied Earth Observation and Geoinformation, 13(4): 536-544. crossref(new window)

31.
Pu, R., Z. Li, P. Gong, I. Csiszar, R. Fraser, W. Hao, S. Kondragunta, and F. Weng, 2007. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data, Remote Sensing of Environment, 108(2): 198-208. crossref(new window)

32.
Remmel, T.K., and A.H. Perera, 2001. Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection, Forest Ecology and Management, 152(1): 119-129. crossref(new window)

33.
Roy, D.P., J.S. Borak, S. Devadiga, R.E. Wolfe, M.Zheng, and J. Descloitres, 2002. The MODIS land product quality assessment approach, Remote Sensing of Environment, 83(1): 62-76. crossref(new window)

34.
Rulinda, C.M., W. Bijker, and A. Stein, 2011. The chlorophyll variability in Meteosat derived NDVI in a context of drought monitoring, Procedia Environmental Sciences, 3: 32-37. crossref(new window)

35.
Ryu, J., H. Han, S. Cho, Y. Park, and Y. Ahn, 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS), Ocean Science Journal, 47(3): 223-233. crossref(new window)

36.
Saunders, R.W., and K.T. Kriebel, 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data, International Journal of Remote Sensing, 9(1): 123-150. crossref(new window)

37.
Stockli, R., and P.L. Vidale, 2004. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset, International Journal of Remote Sensing, 25(17): 3303-3330. crossref(new window)

38.
Thayn, J., and K. Price, 2008. Julian dates and introduced temporal error in remote sensing vegetation phenology studies, International Journal of Remote Sensing, 29(20): 6045-6049. crossref(new window)

39.
Townshend, J.R., 1994. Global data sets for land applications from the Advanced Very High Resolution Radiometer: an introduction, International Journal of Remote Sensing, 15(17): 3319-3332. crossref(new window)

40.
Wang, L., P. Xiao, X. Feng, H. Li, W. Zhang, and J. Lin, 2014. Effective Compositing Method to Produce Cloud-Free AVHRR Image, IEEE Geoscience and Remote Sensing Letters, 11(1): 328-332. crossref(new window)

41.
Yeom, J., and H. Kim, 2013. Feasibility of using Geostationary Ocean Colour Imager (GOCI) data for land applications after atmospheric correction and bidirectional reflectance distribution function modelling, International Journal of Remote Sensing, 34(20): 7329-7339. crossref(new window)