JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of nighttime aerosol optical thickness from Suomi-NPP DNB observations over small cities in Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Remote Sensing
  • Volume 32, Issue 2,  2016, pp.73-86
  • Publisher : The Korean Society of Remote Sensing
  • DOI : 10.7780/kjrs.2016.32.2.1
 Title & Authors
Estimation of nighttime aerosol optical thickness from Suomi-NPP DNB observations over small cities in Korea
Choo, Gyo-Hwang; Jeong, Myeong-Jae;
  PDF(new window)
 Abstract
In this study, an algorithm to estimate Aerosol Optical Thickness (AOT) over small cities during nighttime has been developed by using the radiance from artificial light sources in small cities measured from Visible Infrared Imaging Radiometer Suite (VIIRS) sensor`s Day/Night Band (DNB) aboard the Suomi-National Polar Partnership (Suomi-NPP) satellite. The algorithm is based on Beer`s extinction law with the light sources from the artificial lights over small cities. AOT is retrieved for cloud-free pixels over individual cities, and cloud-screening was conducted by using the measurements from M-bands of VIIRS at infrared wavelengths. The retrieved nighttime AOT is compared with the aerosol products from MODerate resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. As a result, the correlation coefficients over individual cities range from around 0.6 and 0.7 between the retrieved nighttime AOT and MODIS AOT with Root-Mean-Squared Difference (RMSD) ranged from 0.14 to 0.18. In addition, sensitivity tests were conducted for the factors affecting the nighttime AOT to estimate the range of uncertainty in the nighttime AOT retrievals. The results of this study indicate that it is promising to infer AOT using the DNB measaurements over small cities in Korea at night. After further development and refinement in the future, the developed retrieval algorithm is expected to produce nighttime aerosol information which is not operationally available over Korea.
 Keywords
Aerosol;Nighttime Aerosol Optical Thickness;Day Night Band;
 Language
Korean
 Cited by
 References
1.
Barreto, A., E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A.J. Berjon, Y. Hernandez, F. Almansa, and M. Gil, 2013. A new method for mocturnal aerosol measurements with a lunar photometer prototype, Atmospheric Measurement Techniques, 6: 585-598, doi:10.5194/atm-6-585. crossref(new window)

2.
Berkoff T.A., M. Sorokin, T.F. Eck, R. Hoff, E. Welton, and B. Holben, 2011. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source, Journal of Atmospheric and Oceanic Technology, 28: 1297-1306. crossref(new window)

3.
Bibi, H., K. Alam, F. Chishtie, S. Bibi, I. Shahid, and T. Blaschke, 2015. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data, Atmospheric Environment, 111: 113-126. crossref(new window)

4.
Cao, C., F.J. DeLuccia, X. Xiong, R. Wolfe, and F. Weng, 2014. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite, IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1142-1156. crossref(new window)

5.
EPA, 2015. PM Centers, http://www.epa.gov/ncer/science/pm/centers.html, Accessed on 2 October 2015.

6.
Holben B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998. AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66: 1-16. crossref(new window)

7.
Hsu, N.C., M.-J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, and S.-C. Tsay, 2013. Enhanced Deep Blue aerosol retrieval algorithm: The second generation, Journal of the Atmospheric Sciences, 118: 9296-9315, doi:10.1002/jgrd.50712.

8.
Jeong, M.-J., 2013. Retrieval of Atmospheric Optical Thickness from Digital Images of the Moon, Korean Journal of Remote Sensing, 29(5): 555-568(in Korean with English abstract). crossref(new window)

9.
Johnson, R.S., J. Zhang, E.J. Hyer, S.D. Miller, and J.S. Reid, 2013. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band, Atmospheric Measurement Techniques, 6: 1245-1255, doi:10.5194/amt-6-1245. crossref(new window)

10.
Kasten, F., 1965. A new table and approximate formula for relative optical air mass, Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie B, 14(2): 206-223. crossref(new window)

11.
Kaufman, Y.J., D. Tanre, and O. Boucher, 2002. A satellite view of aerosols in the climate system, Nature, 419(6903): 251-223. crossref(new window)

12.
Kotchenova, S.Y., E.F. Vermote, R. Levy, and A. Lyapustin, 2008. Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study, Applied Optics, 47(13): 2215-2226. crossref(new window)

13.
Levy, R.C., L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T.F. Eck, 2010. Global evaluation of the Collection 5 MODIS darktarget aerosol products over land, Atmospheric Chemistry and Physicsics, 10(21): 10399-10420. crossref(new window)

14.
Levy, R.C., S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, and N.C. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6: 2989-3034. crossref(new window)

15.
Ma, X., K. Bartlett, K. Harmon, and F. Yu, 2013. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions, Atmospheric Measurement Techniques, 6: 2391-2401. crossref(new window)

16.
McKendry, I.G., J.P. Hacker, R. stull, S. Sakiyama, D. Mignacca, and L. Reid, 2001. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada, Journal of the Geophysical Research: Atmospheres, 106(D16): 18361-18370. crossref(new window)

17.
Robinson, N., 1966. Solar Radiation, American Elsevier, New York.

18.
Sayer, A.M., N.C. Hsu, C. Bettenhausen, and M.-J. Jeong, 2013. Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data, Journal of the Geophysical Research: Atmospheres, 118(14): 7864-7872, doi:10.1002/jgrd.50600. crossref(new window)

19.
Schueler, C.F., T.F. Lee, and S.D. Miller, 2013. VIIRS constant spatial-resolution advantages, International Journal of Remote Sensing, 34: 5761-5777. crossref(new window)

20.
Schuster, G.L., M. Vaughan, D. MacDonnell, W. Su, D. Winker, O. Dubovik, T. Lapyonok, and C. Trepte, 2012. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust, Atmospheric Chemistry and Physics Oiscussions, 12(5): 11641-11697. crossref(new window)

21.
Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

22.
Twomey, S.A., 1997. The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences, 34: 1149-1152.

23.
Walther, A., A.K. Heidinger, and S. Miller, 2013. The expected performance of cloud optical and microphysical properties derived from Suomi NPP VIIRS day/night band lunar reflectance, Journal of the Geophysical Research: Atmospheres, 118(13): 13230-13240, doi:10.1002/2013JD020478. crossref(new window)

24.
Zhang, J., A.S.A. Christopher, L.A. Remer, and Y.J. Kaufman, 2005. Shortwave aerosol radiative forcing over cloud-free oceans from Terra: 2. Seasonal and global distributions, Journal of the Geophysical Research: Atmospheres, 110(D10): doi:10.1029/2004JD005009.

25.
Zhang, J., J.R. Cmpbell, J.S. Reid, D.L. Westphal, N.L. Baker, W.F. Campbell, and E.J. Hyer, 2011. Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model, Geophysical Research Letters, 38: L14801, doi:10.1029/2011GL047737.

26.
Zhao, T.L., S.L. Gong, X.Y. Zhang, -P. Blanchet, I.G. McKendry, and Z.J. Zhou, 2006. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part I: Mean Climate and Validation, Journal of climate, 19(1): 88-103. crossref(new window)