JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis on Characteristics of Radiosonde Sensors Bias Using Precipitable Water Vapor from Sokcho Global Navigation Satellite System Observatory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Remote Sensing
  • Volume 32, Issue 3,  2016, pp.263-274
  • Publisher : The Korean Society of Remote Sensing
  • DOI : 10.7780/kjrs.2016.32.3.6
 Title & Authors
Analysis on Characteristics of Radiosonde Sensors Bias Using Precipitable Water Vapor from Sokcho Global Navigation Satellite System Observatory
Park, Chang-Geun; Cho, Jungho; Shim, Jae-Kwan; Choi, Byoung-Choel;
  PDF(new window)
 Abstract
In this study, we compared the Precipitable Water Vapor (PWV) data derived from the radiosonde observation at Sokcho observatory and the PWV data at Sokcho Global Navigation Satellite System (GNSS) observatory provided by Korea Astronomy and Space Science Institute, for the summer of 2007~2014, and analyzed the radiosonde diurnal and rainfall-dependent bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and GNSS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study and dry bias of RSG-20A sensor was larger than other sensors. Overall, the tendency that the wet bias of the radiosonde PWV increased as GNSS PWV decreased and the dry bias of the radiosonde PWV increased as GNSS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2007, 2008 summer. In comparison for summer according to the presence or absence of rainfall, RS92-SGP sensor showed the highest quality.
 Keywords
GNSS;precipitable water vapor;radiosonde;bias;
 Language
Korean
 Cited by
 References
1.
Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware, 1992. GPS meteorology: remote sensing of atmospheric water vapor using global positioning system, Journal of Geophysical Research, 97: 15787-15801. crossref(new window)

2.
Bevis, M., S. Chiswell, S. Businger, T.A. Herring, and Y. Bock, 1996. Estimating wet delays using numerical weather analyses and predictions, Radio Science, 31: 477-487. crossref(new window)

3.
Businger, S., S.R. Chiswell, M. Bevis, J. Duan, R.A. Anthes, C. Rocken, R.H. Ware, M. Exner, T. VanHove, and F.S. Solheim, 1996. The promise of GPS in atmospheric monitoring, Bulletin of the American Meteorological Society, 77: 5-18. crossref(new window)

4.
Dach, R., U. Hugentobler, P. Fridez, and M. Meindl, 2007. Bernese GPS Software Version 5.0, Stampfli Publications, Bern, Switzerland.

5.
Davis, J.L., T.A. Herring, I.I. Shapiro, A.E. Rogers, and G. Elgered, 1985. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio Science, 20: 1593-1607. crossref(new window)

6.
Duan, J., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S. Businger, C. Rocken, F. Solheim, T. VanHove, R.H. Ware, S. McClusky, T.A. Herring, and R.W. King, 1996. GPS meteorology: direct estimation of the absolute value of precipitable water, Journal of Applied Meteorology, 35: 830-838. crossref(new window)

7.
Durre, I., C.N. Williams, X. Yin, and R.S. Vose, 2009. Radiosonde-based trends in precipitable water over the northern hemisphere: an update, Journal of Geophysical Research, 114: D05112, doi:10.1029/2008JD010989. crossref(new window)

8.
Elgered, G., J.L. Davis, T.A. Herring, and I.I. Shapiro, 1991. Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay, Journal of Geophysical Research, 96: 6541-6555. crossref(new window)

9.
Elliott, W.P. and D.J. Gaffen, 1991. On the utility of radiosonde humidity archives for climate studies, Bulletin of the American Meteorological Society, 72: 1507-1520. crossref(new window)

10.
Kim, J.S. and I.H. Yoon, 2014. Study on the prediction of turning point of typhoon tracks using COMS water vapor images, Journal of Korean Earth Science Society, 35: 168-179 (in Korean with English abstract). crossref(new window)

11.
Kim, J.S. and T.S. Bae, 2015. Comparative analysis of GNSS precipitable water vapor and meteorological factors, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33: 317-324 (in Korean with English abstract). crossref(new window)

12.
Kim, K.H., Y.H. Kim, and D.E. Chang, 2009. The analysis of changma structure using radiosonde observational data from KEOP-2007: Part I. the assessment of the radiosonde data, Atmosphere, 19: 213-226 (in Korean with English abstract).

13.
Kwon, H.T., T. Iwabuchi, and G.H. Lim, 2007. Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula, Journal of the Meteorological Society of Japan, 85: 733-746. crossref(new window)

14.
Lean, K. and R.W. Saunders, 2013. Validation of the ATSR reprocessing for climate (ARC) dataset using data from drifting buoys and a three-way error analysis, Journal of Climate, 26: 4758-4772. crossref(new window)

15.
Li, Z., J.P. Muller, and P. Cross, 2003. Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements, Journal of Geophysical Research, 108(D20): 4651, doi:10.1029/2003JD003372. crossref(new window)

16.
Lim, Y.K., S.O. Han, S.P. Jung, and J.H. Seong, 2013. The characteristic analysis of precipitable water vapor according to GPS observation baseline determination, Journal of Korean Earth Science Society, 34: 626-632 (in Korean with English abstract). crossref(new window)

17.
Liou, Y.A., C.Y. Huang, and Y.T. Teng, 2000. Precipitable water observed by ground-based GPS receivers and microwave radiometry, Earth Planets Space, 52: 445-450. crossref(new window)

18.
Liou, Y.A., Y.T. Teng, T. VanHove, and J.C. Liljegren, 2001. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, Journal of Applied Meteorology, 40: 5-15. crossref(new window)

19.
Lorenc, A.C., D. Barker, R.S. Bell, B. Macpherson, and A.J. Maycock, 1996. On the use of radiosonde humidity observations in mid-latitude NWP, Meteorology and Atmospheric Physics, 60: 3-17. crossref(new window)

20.
McMillin, L.M., J. Zhao, M.K. Rama Varma Raja, S.I. Gutman, and J.G. Yoe, 2007. Radiosonde humidity corrections and potential atmospheric infrared sounder moisture accuracy, Journal of Geophysical Research, 112: D13S90, doi:10.1029/2005JD006109. crossref(new window)

21.
Motell, C., J. Porter, J. Foster, M. Bevis, and S. Businger, 2002. Comparison of precipitable water over Hawaii using AVHRR-based split-window techniques, GPS and radiosondes, International Journal of Remote Sensing, 23: 2335-2339. crossref(new window)

22.
Nakamura, H., H. Seko, and Y. Shoji, 2004. Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS, Journal of the Meteorological Society of Japan, 82: 277-299. crossref(new window)

23.
Ohtani, R. and I. Naito, 2000. Comparisons of GPSderived precipitable water vapors with radiosonde observations in Japan, Journal of Geophysical Research, 105: 26917-26929. crossref(new window)

24.
Rocken, C., T. VanHove, J. Johnson, F. Solheim, R.H. Ware, M. Bevis, S. Chiswell, and S. Businger, 1995. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology, 12: 468-478. crossref(new window)

25.
Song, D.S., H.S. Yun, and J.M. Cho, 2002. Estimation of tropospheric water vapor using GPS observation, Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography, 20: 215-222 (in Korean with English abstract).

26.
Takiguchi, H., T. Kato, H. Kobayashi, and T. Nakaegawa, 2000. GPS observations in Thailand for hydrological applications, Earth Planets Space, 52: 913-919. crossref(new window)

27.
Wang, J. and L. Zhang, 2008. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements, Journal of Climate, 21: 2218-2238. crossref(new window)

28.
World Meterorological Organization, 2006. Instruments and observing methods, Report No. 83, WMO Publications, Geneva, Switzerland.

29.
World Meterorological Organization, 2008. Guide to meteorological instruments and methods of observation, WMO Publications, Geneva, Switzerland.

30.
World Meterorological Organization, 2011. Instruments and observing methods, Report No. 107, WMO Publications, Geneva, Switzerland.

31.
Yang, H.Y., K.H. Chang, J.W. Cha, Y.J. Choi, and C.S. Ryu, 2012. Characteristics of precipitable water vapor and liquid water path by microwave radiometer, Journal of Korean Earth Science Society, 33: 233-241 (in Korean with English abstract). crossref(new window)