JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Remote Sensing
  • Volume 32, Issue 3,  2016, pp.307-321
  • Publisher : The Korean Society of Remote Sensing
  • DOI : 10.7780/kjrs.2016.32.3.9
 Title & Authors
Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system
Nam, Hyoung-Gu; Choi, Won; Kim, Yoo-Jun; Shim, Jae-Kwan; Choi, Byoung-Choel; Kim, Byung-Gon;
  PDF(new window)
 Abstract
Planetary Boundary Layer Height (PBLH) is a major input parameter for weather forecasting and atmosphere diffusion models. In order to estimate the sub-grid scale variability of PBLH, we need to monitor PBLH data with high spatio-temporal resolution. Accordingly, we introduce a LIdar observation VEhicle (LIVE), and analyze PBLH derived from the lidar loaded in LIVE. PBLH estimated from LIVE shows high correlations with those estimated from both WRF model ($R^2
 Keywords
LIdar observation VEhicle (LIVE);Planetary Boundary Layer (PBL);Residual Layer (RL);growth rate;
 Language
Korean
 Cited by
 References
1.
Baars, H., A. Ansmann, R. Engelmann, and D. Althausen, 2008. Continuous monitoring of the boundary-layer top with lidar, Atmospheric Chemistry and Physics, 8: 7281-7296. crossref(new window)

2.
Banks, F.R., J. Tiana-Alsina, J.M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C.G. Tzanis, 2016. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign, Atmospheric Research, 176-178: 185-201.

3.
Bi, L., Y. Ping, W.K. George, A.B. Bryan, X.H. Yong, M.W. David, R.S. Brock, and J.Q. Lu, 2009. Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and $1.064{\mu}m$, Journal of Geophysical Research, 114, D00H08, doi:10.1029/2009JD011759. crossref(new window)

4.
Brooks, M.I., 2003. Finding Boundary Layer Top: Application of a wavelet covariace transform to lidar backscatter profiles, Journal of Atmospheric and Oceanic Technology, 20: 1092-1105. crossref(new window)

5.
Cairo, F., G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, 1999. Comparison of various linear depolarization parameters measured by lidar, Applied Optics research, 38: 4425-4432. crossref(new window)

6.
Carswell, A.I., A. Fong, S.R. Pal, and I. Pribluda, 1995. Lidar-derived distribution of vertical location and extent, Bulletin of the American Meteorological Society, 34: 107-120.

7.
Chen, F. and J. Dudhia, 2001. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 Modeling system. Part I: Model implementation and sensitivity, Monthly Weather Review, 129: 569-585. crossref(new window)

8.
Coen, M.C., C. Praz, A. Haefele, D. Ruffieux, and B. Calpini, 2014. Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model, Atmospheric Chemistry and Physics, 14: 13205-13221. crossref(new window)

9.
Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Muller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefelder, 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B, 61(1): 165-175. crossref(new window)

10.
Granados-Munoz, F. Navas-Guzman, J.A. Bravo-Aranda, J.L. Guerrero-Rascado, H. Lyamani, J. Ferandez-Galvez, and L. Alados-Arboledas, 2012. Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain, Journalof Geophysical Research, 117, D18208.

11.
Hariprasad, K.B.R.R., C.V. Srinivas, A.B. Singh, S.V.B. Rao, R. Baskaran, and B. Venkatraman, 2014. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site, Atmospheric. Research, 145-146(2014): 27-44. crossref(new window)

12.
Hong, S.Y., Y. Noh, and J. Dudihia, 2006. A new vertical diffusion package with an explicit treatment of entrainment processes, Monthly Weather Review, 134: 2318-2341. crossref(new window)

13.
Hu, X.M., J.W.N. Gammon, F. Zhang, 2010. Evaluation of three planetary boundary layer schemes in the WRF model, American Meteorological Society, 49: 1831-1844.

14.
Jung, S.P., T.Y. Kwon, and S.O. Han, 2014. Thermodynamic characteristics associated with localized torrential rainfall events in the middle west region of Korean Peninsula, Atmosphere, 24(4): 457-470 (in Korean with English abstract). crossref(new window)

15.
Kim, B.G., S.A. Klein, J.R. Norris, 2005. Continental liquid water cloud variability and its parameterization using atmospheric radiation measurement data, Journal of Geophysical, Research, 110: 1-18, D15S08.

16.
Kim, D.R., and T.Y. Kwon, 2011. Characteristics of satellite brightness temperature and rainfall intensity over the life cycle of convective cells-case study, Atmosphere, 21(3): 273-284 (in Korean with English abstract).

17.
Kim, H.W., and D.K. Lee, 2006. An observational study of mesoscale convective systems with heavy rainfall over the Korea Peninsula, Weather and Forecasting, 21: 125-148. crossref(new window)

18.
Kim, I.H., T.Y. Kwon, and D.R. Kim, 2012. MTSAT satellite image features on the sever storm events in Yeongdong region, Atmosphere, 22(1): 29-45 (in Korean with English abstract). crossref(new window)

19.
Kim, M.H., H.D. Yeo, N. Sugimoto, H.C. Lim, C.K. Lee, B.H. Heo, Y.S. Yu, B.J. Sohn, S.C. Yoon, and S.W. Kim, 2015. Estimation of particle mass concentration from lidar measurement, Atmosphere, 26(1): 169-177 (in Korean with English abstract).

20.
Kim, M.H., S.W. Kim, S.C. Yoon, N Sugimoto, and B.J. Sohn, 2011. Characteristics of the lidar ratio determined from lidar and sky radiometer measurements in Seoul, Atmosphere, 21(1): 57-67 (in Korean with English abstract).

21.
Kim, S.J., G.T. Kim, G.H. Kim, S.O. Han, 2013. Operating technical report of Mobile observation Vehicle(MOVE), National Institute of Meteorological Sciences, 11-1360395-000424-01

22.
Klett, J.D., 1981. Stable analytical inversion solution for processing lidar returns, Applied Optics research, 20(2): 211-220. crossref(new window)

23.
Lim, K.S., and S.Y. Hong, 2010. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei(CCN) for weather and climate model, American Meteorological Society, 138: 1587-1612.

24.
Molod, A.H. Salmun, and M. Dempsey, 2015. Estimating planetary boundary layer heights from NOAA profiler network wind profiler data, Journal of Atmospheric and Oceanic Technology, doi: 10.1175/JTECH-D-14-00155.1. crossref(new window)

25.
Murayama, T., H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, 1999. Application of lidar depolarization measurement in the atmospheric boundary layer: Effect of dust and sea-salt particles, Journal of Geophysical Research, 104, 31781-31792. crossref(new window)

26.
Park, S.Y., H.W. Lee, S.H. Lee, K.O. Lee, and H.U. Ji, 2011. Impact of the variation of sea breeze penetration due to terrain complexity on PBL development, Journal of Environmental Sciences Internship, 20(2): 275-289 crossref(new window)

27.
Platt, C.M., S.A. Young, A. Carswell, S. Pal, M.P. McCormick, D.M. Winker, M. Delguasta, L. stefanutti, W. Everhard, M. Hardesty, P. Flamant, R. valentine, B. Forgan, G. Gimmestad, H. Jäger, S. Khmelevtsov, I. Kolev, B. Kaprieolev, Darren, Lu, K. Sassen, V. Shamanaev, O. Uchino, Y. Mizuno, U. Wandinger, C. Weitkamp, A. Ansmann, and C. Wooldridge, 1994. The Experimental Cloud Lidar Pilot Study(ECLIPS) for for cloud-radiation research, Bulletin American Meteorological Society, 75: 1635-1654. crossref(new window)

28.
Seiber, P., F.S.E. Gryning, S. Joffre, A. Rasmussen, P. Tercier, 2000. Review and intercomparison of operational methods for the determination of the mixing height, Atmospheric environment, 34: 1001-1027 crossref(new window)

29.
Seidel, D.J., C.O. Ao, and K. Li, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, Journal of Geophysics Reseach, 115, D16113. crossref(new window)

30.
Seo, E.K., and G. Liu, 2006. Determination of 3D cloud ice water contents by combining multiple data sources from satellite, ground radar, and a numerical model, Journal of Applied Meteorology and Climatology, 45, 1494-1504. crossref(new window)

31.
Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos, 2011. Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary later profiling over Athens, Greece, Atmospheric Measurement Techniques, 4: 1261-1273. crossref(new window)

32.
Yeo, H.D., S.W. Kim, C.K. Lee, D.H. Kim, B.G. Kim, S.W. Kim, H.G. Nam, Y.M. Noh, S.J. Park, C.B. Park, K.S. Seo, J.Y. Choi, M.I. Lee, and E.H. Lee, 2016. The KALION automated Aerosol type classification and mass Concentration calculation algorithm, Korean Journal of Remote sensing, 32(2): 119-131 (in Korean with English abstract). crossref(new window)