JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Simulations of Finite Schematic Eyes for Presbyopia Using the Navarro Eye Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Simulations of Finite Schematic Eyes for Presbyopia Using the Navarro Eye Model
Kim, Shin-Hwa; Kim, Dal-Young;
  PDF(new window)
 Abstract
Purpose: This study was aimed to design new schematic eyes for presbyopia using the Navarro eye model and clinical data. Methods: We collected clinical data of eye-optical parameters of males in their age of 40, 50, and 60 from previous studies, and designed schematic eyes for presbyopia using the ZEMAX program. Results: The presbyopic process and features of the designed schematic eyes well accorded with the clinical data of previous studies. Conclusions: On the basis of the Navarro eye model, a finite schematic eyes for presbyopia were newly designed corresponding with clinical data.
 Keywords
Navarro model eye;Presbyopia;ZEMAX;Ray tracing;
 Language
Korean
 Cited by
1.
A Simulation Study of Female Schematic Eyes for the Presbyopia Based on the Clinical Data, Journal of Korean Ophthalmic Optics Society, 2017, 22, 1, 41  crossref(new windwow)
 References
1.
Kim BH, Kim SJ, Lim HS, Ji TS. Design of the schematic eye of Koreans using the clinical data. J Korean Ophthalmic Opt Soc. 2004;9(1):117-124.

2.
Kim SG, Park SC. Prediction of visual performance using contrast sensitivity function and modulation transfer function. J Korean Ophthalmic Opt Soc. 2004;15(5):461-468.

3.
Sturzu A, Luca-Motoc D. Theoretical eye models comparison based on MTF evolution. Bulletin of the Transilvania University of Brasov SeriesI: Engineering Sciences. 2011;4(53):33-38.

4.
Sung PJ. Optometry, 5th Ed. Seoul: Daihakseorim, 2005; 33-40.

5.
Kang EK, Park SC, Kim JJ, Hwangbo CK. Analysis and design of an accommodation-dependent eye model based on Navarro model. J Korean Ophthalmic Opt Soc. 2010; 15(3):235-240.

6.
Kim SG, Choi KU. Analysis of accommodation error at the Navarro eye. Korean J Vis Sci. 2007;9(1):43-51.

7.
Navarro R, Santamaria J, Bescos J. Accommodationdependent model of the human eye with aspherics. J Opt Soc Am A. 1985;2(8):1273-1281. crossref(new window)

8.
Statistics Korea. The population ratio of the aged people and the aging index, 2015. http://kosis.kr/statHtml/statHtml.do?orgId=113&tblId=DT_113_STBL_1015552&vw_cd=MT_ZTITLE&list_id=113_11314_02&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=E1(20 July 2015).

9.
Weale RA. Presbyopia. Brit J Ophthalmol. 1962;46:660-668. crossref(new window)

10.
Baarg SB. Optical models of the finite schematic eyes for presbyopia. J Korean Ophthalmic Opt Soc. 2008;19(6): 439-447.

11.
Dubbelman M, Weeber HA, van der Heijde RGL, Vlker-Dieben HJ. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpglug photography. Acta Opthalmol Scand. 2002;80(4):379-383. crossref(new window)

12.
Dubbelman M, Sicam VA, Van der Heijde GL. The shape of the anterior and posterior surface of the aging human cornea. Vis Res. 2006;46(6):993-1001. crossref(new window)

13.
Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis. 2008; 8(4):1-20.

14.
Dubbelman M, Van der Heijde GL. The shape of the aging human lens: curvature, equivalent refractive index and paradox. Vis Res. 2001:41(14);1867-1877. crossref(new window)

15.
Sivak JG, Mandelman T. Chromatic dispersion of the ocular media. Vis Res. 1982;22(8):997-1003. crossref(new window)

16.
Wikpedia. CIE 1931 color space , 2015. https://en.wikipedia.org/wiki/CIE_1931_color_space(5 June 2015).

17.
Alessi PJ. CIE technical report calorimetry, 2004. https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCwQFjACahUKEwi0-qrAou7GAhUWW4gKHcuyD_o&url=http%3A%2F%2Fwww.cdvplus.cz%2Ffile%2F3-publikace-cie15-2004%2F&ei=e02vVfTQIpa2oQTL5b7QDw&usg=AFQjCNEJEKGrJDBpo7hVn0Z_T_AYs9a24Q&sig2=GhvSv1ylL02qYVOcXzBHVQ&bvm=bv.98197061,d.dGY(22 July 2015).

18.
International Organization for Standardization (ISO). Ophthalmic implants intraocular lenses - part 2: Optical properties and test methods, 2014. http://www.iso.org/iso/catalogue_detail.htm?csnumber=55682(22 July 2015).

19.
Kim SG, Park SC. Prediction of visual performance using contrast sensitivity function and modulation transfer function. J Korean Ophthalmic Opt Soc. 2004;15(5):461-468.

20.
Koretz JE, Strenk SA, Strenk LM, Semmlow JL. Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: A comparative study. J Opt Soc Am A Opt Image Sci Vis. 2004;21(3):346-354. crossref(new window)

21.
Wong TY, Foster PJ, Ng TP, Tielsch JM, Johnson GJ, Seah SK. Variations in ocular biometry in an adult Chinese population in Singapore: The Tanjong Pagar Survey. Invest Ophthalmol Vis Sci. 2001;42(1):73-80.

22.
Glasser A, Campbell MC. Presbyopia and the optical changes in the human crystalline lens with age. Vis Res. 1998;38(2):209-229. crossref(new window)

23.
Cavallotti CAP, Cerulli A. Age-related changes of the human eye (Chap. 3. Aging effects on the optics of the eye written by Artal P.), 1st Ed. New York: Humana Press, 2008: 35-44.