Influence of the Geometry on the Natural Convection Heat Transfer inside a Vertical Cylinder

- Journal title : Journal of Energy Engineering
- Volume 24, Issue 1, 2015, pp.97-103
- Publisher : The Korea Society for Energy Engineering
- DOI : 10.5855/ENERGY.2015.24.1.097

Title & Authors

Influence of the Geometry on the Natural Convection Heat Transfer inside a Vertical Cylinder

Ohk, Seung-Min; Chung, Bum-Jin;

Ohk, Seung-Min; Chung, Bum-Jin;

Abstract

Natural convection heat transfer rates in vertical pipes were measured varying the diameter, length, and roughness of vertical cylinder. To achieve high Rayleigh number with relatively small test rig, mass transfer experiments instead of heat transfer were performed based on the analogy. Prandtl number was 2,014. The length of vertical cylinder was 0.1m, 0.3m, and 0.5m, which correspond to GrL , , and . To each length of vertical cylinder, the heat transfer rates were measured varying the iameter 0.005m, 0.01m, and 0.03m. The heat transfer rate for a short length pipe(0.1m) agreed with the prediction from Le Fevre correlation developed for a vertical plate for all diameter. The heat transfer rate decreases as the diameter and the length of the pipe increases. The heat transfer rate inside of vertical cylinder is affected by roughness only for a laminar flow regime.

Keywords

Vertical cylinder;Natural convection;Roughness;Analogy;Electroplating system;

Language

Korean

References

1.

Development and Conceptual Design for Passive Containment Cooling System, Ministry of Trade, Industry & Energy, Korea Institute Energy Technology Evaluation and Planning, 2014

2.

Frank P. Incopera, David, P Dewitt, Foundation of Heat Transfer 6th, 2011, pp. 572-575

3.

Bejan., A., Convection Heat Transfer, 3rd ed., John Wiley & Sons, INC, New York, 2003, pp. 207-222

6.

Ohk, S. M., Chung, B. J., The Influence of the Surface Roughness on the Natural Convection on a Vertical Flat Plate, Journal of Energy Engineering, 2014, 23, 2, pp. 21-27

8.

Fage, A and Preston, J. H., On transition from laminar to turbulent flow in the boundary layer, Proceedings of the Royal Society of London, 1941, 178, pp. 201-227

9.

Fujii, T., Fujii, M., and Takeushi, M., Influence of various surface roughness on the natural convection, 1973, 16, pp. 629-640

10.

Levich. V. G., Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J, 1962

11.

Selman, J. R., Tobias, C. W., Mass transfer Measurement by the Limiting Current Technique, Adv. Chem. Eng., 1978, 10, pp. 211-318

12.

Ko, S. H., Moon, K. W. and Chung, B. J., Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept, Nuclear Engineering and Technology, 2006, 38, pp. 251-258

13.

Kang, K. U. and Chung, B. J., The Effects of the Anode size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiment in a Vertical Pipe, Trans. of the KSME(B), 2010, 34, pp.1-8