Advanced SearchSearch Tips
Influence of the Geometry on the Natural Convection Heat Transfer inside a Vertical Cylinder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Energy Engineering
  • Volume 24, Issue 1,  2015, pp.97-103
  • Publisher : The Korea Society for Energy Engineering
  • DOI : 10.5855/ENERGY.2015.24.1.097
 Title & Authors
Influence of the Geometry on the Natural Convection Heat Transfer inside a Vertical Cylinder
Ohk, Seung-Min; Chung, Bum-Jin;
  PDF(new window)
Natural convection heat transfer rates in vertical pipes were measured varying the diameter, length, and roughness of vertical cylinder. To achieve high Rayleigh number with relatively small test rig, mass transfer experiments instead of heat transfer were performed based on the analogy. Prandtl number was 2,014. The length of vertical cylinder was 0.1m, 0.3m, and 0.5m, which correspond to GrL , , and . To each length of vertical cylinder, the heat transfer rates were measured varying the iameter 0.005m, 0.01m, and 0.03m. The heat transfer rate for a short length pipe(0.1m) agreed with the prediction from Le Fevre correlation developed for a vertical plate for all diameter. The heat transfer rate decreases as the diameter and the length of the pipe increases. The heat transfer rate inside of vertical cylinder is affected by roughness only for a laminar flow regime.
Vertical cylinder;Natural convection;Roughness;Analogy;Electroplating system;
 Cited by
Development and Conceptual Design for Passive Containment Cooling System, Ministry of Trade, Industry & Energy, Korea Institute Energy Technology Evaluation and Planning, 2014

Frank P. Incopera, David, P Dewitt, Foundation of Heat Transfer 6th, 2011, pp. 572-575

Bejan., A., Convection Heat Transfer, 3rd ed., John Wiley & Sons, INC, New York, 2003, pp. 207-222

Elenbaas, W., Physica, 1942, 9, 1 crossref(new window)

Bar-Cohen, A., and W. M. Rohsenow, Journal of Heat Transfer, 1984, 106, 116 crossref(new window)

Ohk, S. M., Chung, B. J., The Influence of the Surface Roughness on the Natural Convection on a Vertical Flat Plate, Journal of Energy Engineering, 2014, 23, 2, pp. 21-27

Lun-Shin Yao, Natural convection along a vertical complex wavy surface, 2006, 49, pp. 281-286 crossref(new window)

Fage, A and Preston, J. H., On transition from laminar to turbulent flow in the boundary layer, Proceedings of the Royal Society of London, 1941, 178, pp. 201-227 crossref(new window)

Fujii, T., Fujii, M., and Takeushi, M., Influence of various surface roughness on the natural convection, 1973, 16, pp. 629-640 crossref(new window)

Levich. V. G., Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J, 1962

Selman, J. R., Tobias, C. W., Mass transfer Measurement by the Limiting Current Technique, Adv. Chem. Eng., 1978, 10, pp. 211-318 crossref(new window)

Ko, S. H., Moon, K. W. and Chung, B. J., Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept, Nuclear Engineering and Technology, 2006, 38, pp. 251-258

Kang, K. U. and Chung, B. J., The Effects of the Anode size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiment in a Vertical Pipe, Trans. of the KSME(B), 2010, 34, pp.1-8

Fenech, E. J. and Tobias, C. W., Mass transfer by free convection at horizontal electrode, Electrochimica Acta, 1960, 2, 311-325 crossref(new window)