Advanced SearchSearch Tips
Animal Model for Regeneration of Olfactory Sensory Neurons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Animal Model for Regeneration of Olfactory Sensory Neurons
Jeong, Yun-Mi; Park, Jong-Su; Kim, Cheol-Hee; You, Kwan-Hee;
  PDF(new window)
The olfactory system is an important model for the study of neuronal degeneration and regeneration, including neuronal diseases. When the olfactory sensory neurons are damaged by nerve injury or are exposed to environmental factors, they degenerate and are replaced by regenerating neurons. To monitor neuronal degeneration in living animal, we established an olfactory-specific GFP transgenic zebrafish. The effects of Triton X-100 or sodium acetate on the olfactory system were examined. A significant decrease in the number of GFP-positive olfactory sensory neurons was observed after chemical lesion. We found a recovery of GFP-positive neurons by 2 days posttreatment. From these results, we expect that further studies of olfactory degeneration and regeneration using this transgenic zebrafish will provide important advances for the study of neuronal degeneration and regeneration.
Olfactory dysfunction;Anosmia;Regeneration;Animal model;Convergence;
 Cited by
S. Firestein, "How the olfactory system makes sense of scents." Nature 413.6852 211-218, 2001. crossref(new window)

R.L. Doty, D.A. Deems, S. Stellar, "Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration." Neurology, 38(8):1237-44, 1988. crossref(new window)

B. M. Pause, A, Miranda, R. Goder, J. B. Aldenhoff, R. Ferstl, "Reduced olfactory performance in patients with major depression.", Journal of psychiatric research, 35(5), 271-277, 2001 crossref(new window)

C. Ashwin, E. Chapman, J. Howells, D. Rhydderch, I.. Walker, S, Baron-Cohen, "Enhanced olfactory sensitivity in autism spectrum conditions.", Molecular autism, 5(1), 1, 2014. crossref(new window)

H. G. Kim, et al. "WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome." The American Journal of Human Genetics 87.4, 465-479, 2010. crossref(new window)

G. J. Lieschke, P. D. Currie, "Animal models of human disease: zebrafish swim into view", Nat Rev Genet. 8(5), 353-67, 2007. crossref(new window)

S. E. Peter, P. Ekaterina, B. E. Thomas, M. A. Ann, N. Claes, A. P. Daniel, H. G. Fred, "Neurogenesis in the adult human hippocampus", Nature Medicine. 4, 1313-1317, 1998. crossref(new window)

H. Y. Moon, et al. "Establishment of a transgenic zebrafish $EF1{\alpha}$: Kaede for monitoring cell proliferation during regeneration." Fish & shellfish immunology 34.5 1390-1394, 2013. crossref(new window)

M. M. Reimer, I. Sorensen, V. Kuscha, R. E. Frank, C . Liu, C. G. Becker, T. Becker, "Motor neuron regeneration in adult zebrafis", J Neurosci. 28(34):8510-6, 2008. crossref(new window)

G. Yona, E. S. Tamar, R. Patricia, T. E. Jusuf, E. H. Thomas, N. C. Mai, D. C. Peter, "Fgf-Dependent Glial Cell Bridges Facilitate Spinal Cord Regeneration in Zebrafish", The Journal of Neuroscience, 32(22):7477-7492, 2012. crossref(new window)

D. M. Baldisseri, J. W. Margolis, D. J. Weber, J. H. Koo, F. L. Margolis, "Olfactory Marker Protein (OMP) Exhibits a $\beta$-Clam Fold in solution : Implication for Target Peptide Interaction and olfactory signal Transduction", J Mol Biol 319(3):823-37, 2002. crossref(new window)

M. Westerfield, "The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio)." 4th ed., Univ. of Oregon Press, Eugene. 2000.

T. Yoshida, A. Ito, N. Matsuda, M. Mishina, "Regulation by protein kinase A switching of axonal pathfinding of zebrafish olfactory sensory neurons through the olfactory placode-olfactory bulb boundary", The journal of Neuroscience. 22(12) : 4964-4972, 2002. crossref(new window)

T. Iqbal, C. Byrd-Jacobs, "Rapid degeneration and regeneration of the zebrafish olfactory epithelium after triton X-100 application." Chem Senses. 35(5):351-61, 2010. crossref(new window)

J. K. Robert, D. S. Robert, Jr, C. Neil, "Further evaluation of an in vivo tetralogy screen", Teratogenesis, Carcinogenesis, and Mutagenesis 7:7-16, 1987. crossref(new window)

Hee-Kyun Oh, Eun-Young Do, Hae-Ryoung Park, "Convergence Studies of NO Homeostasis in Cellular Signalling", Journal of digital Convergence, Vol. 13, No. 12, pp. 461-467, 2015.

Hae-Ryoung Park, Suk-Jin Hong, "Research on Natural Medicine for Wellness and Oral Health", Journal of digital Convergence, Vol. 13, No. 5, pp. 357-363, 2015.

Yun-Cheal Sueng, Kyu-Jin Chung, Kwang-jo Cheong, "Anti-asthmatic activities of Cypress oil in a mouse model of allergic asthma", Journal of the Korea Convergence Society, Vol. 13, No. 1, pp. 341-351, 2015.

Gi-Chul Yang, "Integration Scheme of Gene Information based on Anatomical Structure", Journal of digital Convergence , Vol. 13, No. 2, pp. 153-158, 2015.

Joo-Yeon Lee, Young-Sook, Moon, "Effects of Chronic Pain and Social support on Depression and Suicide in the Elderly", Journal of digital Convergence , Vol. 13, No. 10, pp. 445-458, 2015.

Jae-Il Han, Hyun-Ho Sung, Chang-Eun Park, "Study on Convergence Technique Using the Antimicrobial Resistance and Virulence Genes Analysis in Escherichia coli", Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 77-84, 2015.

Hong-Rynag Jung, Ki-Jeong Kim, Eun-Hee Mo, "A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom", Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 287-294, 2015. crossref(new window)