JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fatigue Life Analysis of Rolling Contact Model Considering Stress Gradient Effect
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Tribology and Lubricants
  • Volume 31, Issue 6,  2015, pp.272-280
  • Publisher : The Korean Society of Tribologists and Lubrication Engineers
  • DOI : 10.9725/kstle.2015.31.6.272
 Title & Authors
Fatigue Life Analysis of Rolling Contact Model Considering Stress Gradient Effect
Cho, InJe; Yu, YongHun; Lee, Bora; Cho, YongJoo;
  PDF(new window)
 Abstract
Recently, Luu suggested fatigue life equation that uses every term of the Crossland equation with stress gradient effect. Luu’s model, however, has a limit of being unable to coverage small radii that are less than a specified length. Furthermore, rolling model has a very small contact area compared to the rolling element size, and fatigue failure occurs on the small radius such as surface asperity by cyclic loading. Therefore, it is necessary to modify fatigue life equation in order to enable fatigue analysis for a small radius. In this paper, the fatigue life considering a stress gradient effect in rolling contact was obtained using Luu’s modified equation. Fatigue analysis was performed to study the effect of stress gradient on the fatigue life using newly adopted equation and to compare the results with pervious models. In order to do this, a series of simulation such as surface stress analysis, subsurface stress analysis, and fatigue analysis are conducted for two rolling balls of same size that contact each other. Through such a series of processes, the fatigue life can be calculated and equation that is proposed in this paper evaluates the fatigue life in case the contact area is small.
 Keywords
stress gradient effect;stress invariant;rolling contact fatigue;hertz contact;fatigue life;
 Language
Korean
 Cited by
 References
1.
Ioannides, I. E., Harris, T. A., Ragen, M., “Endurance of Aircraft Gas Turbine Main Shaft Ball Bearings-Analysis Using Improved Fatigue life Theory: Part 1 – Application to a Long-Life Bearing”, J. Tribol., Vol. 112, No. 2, pp. 309-311, 1990. crossref(new window)

2.
Tallian, T., “Weibull Distribution of Rolling Contact Fatigue Life and Deviation Therefrom”, ASLE Trans., Vol. 5, No. 1, pp. 183-196, 1962. crossref(new window)

3.
Harriss, T. A., “Predicting Bearing Reliability”, Mach. Des., Vol. 35, No. 1, pp. 129-132, 1965.

4.
Tallian, T., “On Competing Failure Modes in Rolling Contact”, ASLE Trans., Vol. 10, No. 4, pp. 418-439. 1967. crossref(new window)

5.
Skurka, J., “Elastohydrodynamic Lubrication of Roller Bearings”, J. Tribol., Vol. 92, No. 2, pp. 281-288. 1970.

6.
ISO/TR 1281-1:2008, “Rolling Bearings – Explanatory Notes on ISO 281-Part 1: Basic Dynamic Load Rating and Basic Rating”, ISO, 2008.

7.
ISO 281:2007, “Rolling Bearings – Dynamic Load Ratings and Rating Life”, ISO, 2010.

8.
ABMA Std. 9, “Load Ratings and Fatigue Life for Ball Bearings”, ANSI/AFBMA, 1978.

9.
Ioannides, E., Harris, T. A., “A New Fatigue Life Model for Rolling Bearings”, J. Tribol., Vol. 107, No. 3, pp. 367-378, 1985. crossref(new window)

10.
Yoon, K. C., Design Methods of Application-Based Exclusive Ball Bearings Using Genetic Algorithms, Doctoral Thesis, Department of Mechanical Design and Product Engineering Graduate School, Hanyang University, 2000.

11.
Harris, T. A., Barnsby, R. M., “Life Ratings for Ball and Roller Bearings”, P. I. Mech. Eng. J-J Eng., Vol. 215, No. 6, pp. 577-595, 2001.

12.
Dang Van, K., High-Cycle Metal Fatigue From Theory to Applications. In: Dang Van, K., Papadopoulos, I. V. (eds.) Springer, NewYork, 1999.

13.
Matake, T., “An Explanation on Fatigue Limit under Combined Stress”, B. JSME., Vol. 141, No. 20, pp. 257-263, 1977.

14.
Crossland, B., “Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of two Steels.”, J. Mech. Eng., Vol. 6, No. 3, pp. 293-310, 1956.

15.
Dang Van, K., Griveau, B., and Message, O., “On a New Multiaxial Fatigue Criterion; Theory and Application,” In: Brown, M. W., Miller, K. J. (eds.), Sheffield, UK, 1985.

16.
Kim, T. W., “Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication”, J. Korean Soc. Tribol. Lubr. Eng., Vol 22, No. 6, pp. 320-328, 2006

17.
Chu, H. J., “The Contact Fatigue Life Analysis of Rough Surface”, J. Korean Soc. Tribol. Lubr. Eng., Vol. 21, No. 3, pp. 136-141, 2005.

18.
Sines, G., “Behavior of metals under complex static and alternating stresses”, In: Sines, G., Waisman, J. L. (eds.) Metal Fatigue, pp. 145-169. McGraw-Hill, 1959.

19.
Papadopoulos, I. V., Panoskaltsis, V. P., “Invariant Formulation of a Gradient Dependent Multiaxial High-Cycle Fatigue Criterion”, Eng. Fract. Mech., Vol. 55, No. 4, pp. 513-528, 1996. crossref(new window)

20.
Luu, D. H., “Formulation of Gradient Multiaxial Fatigue Criteria”, Int. J. Fatigue., Vol. 61, pp. 170-183, 2014. crossref(new window)

21.
Hartnett, M. J., “A General Numerical Solution for Elastic Body Contact Problems”, In: Cheng, H. S., Keer, L. M. (eds.) Solid Contact and Lubrication, pp. 51-66. AMD ASME, Vol. 39, 1980.

22.
Love, A. E. H., “The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary”, Phil. Trans. R. Soc. Lond. A, 228, pp. 337, 1929.

23.
Johnson, K. L., Contact Mechanics, 1st Edition, Cambridge University Press., Cambridge, 1985. (ISBN 0-521-34796-3).

24.
Bannatine, J. A., Comer, J. J., Handrock, J. L., Fundamentals of Metal Fatigue Analysis, Prentice Hall, NJ, 1990.

25.
Papadopoulos, I. V., “Long Life Fatigue under Multiaxial Loading”, Int. J. Fatigue., Vol. 23, No. 10, pp. 839-849, 2001. crossref(new window)

26.
Massonnet, Ch., “The Effect of Size, Shape and Grain Size on the Fatigue Strength of Medium Carbon Steel”, Proc. ASTM., Vol. 56, pp. 954-978, 1956.