JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Comparison of Perceptions of Science-related Career Between General and Science Gifted Middle School Students using Semantic Network Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Comparison of Perceptions of Science-related Career Between General and Science Gifted Middle School Students using Semantic Network Analysis
Shin, Sein; Lee, Jun-Ki; Ha, Minsu; Lee, Tae-Kyong; Jung, Young-Hee;
  PDF(new window)
 Abstract
Students' perception of science-related career strongly influences the formation of career motivation in science. Especially, the high level of science gifted students' positive perceptions plays an important role in allowing them to continue to study science. This study compared perceptions of science-related career between general and gifted middle school students using semantic network analysis. To ensure this end, we first structuralize semantic networks of science-related careers that students perceived. Then, we identified the characters of networks that two different student groups showed based on the structure matrix indices of semantic network analysis. The findings illustrated that the number of science-related careers shown in science gifted students' answer is more than in general students' answer. In addition, the science gifted students perceived more diverse science-related careers than general students. Second, scientific career such as natural scientists and professors were shown in the core of science gifted students' perception network whereas non-research oriented careers such as science teachers and doctors were shown in the core of general students' perception network. In this study, we identified the science gifted students' perceptions of science-related career was significantly different from the general students'. The findings of current study can be used for the science teachers to advise science gifted students on science-related careers.
 Keywords
Science-related career;Science gifted middle school student;General middle student;Semantic network analysis;
 Language
Korean
 Cited by
 References
1.
강경희(2010). 과학영재교육 관련 국내 연구 동향. 한국과학교육학회지, 30(1), 54-67.

2.
교육과학기술부(2011). 2009 개정 과학과 교육과정. 교육과학기술부 고시 No. 2009-41.

3.
교육부(1997). 중학교 교육과정. 교육부 고시 No. 1997-15.

4.
교육인적자원부(2007). 초중등교육과정. 교육인적자원부고시 No. 2007-79.

5.
김경순, 신석진, 임희준, 노태희(2008a). 중,고등학생들의 과학 및 기술 관련 일하는 장소와 직업에 대한 인식. 한국과학교육학회지, 28(8), 890-900.

6.
김경순, 이선우, 한수진, 노태희(2008b). "과학, 기술 관련 일하는 장소 그리기"를 이용한 초등학생들의 과학, 기술 관련 직업에 대한 인식 조사. 초등과학교육, 27(3), 307-317.

7.
김민정, 김성국, 최경주(2009). 영업팀 구성원들의 외향성이 사회 네트워크 인지정확성에 미치는 영향 연구. 경상논총, 27(2), 77-102.

8.
김성관, 장명덕, 정진우(2002). '과학자와의 만남' 프로그램 적용이 초등학생의 과학자에 대한 신체적 이미지에 미치는 효과. 한국과학교육학회지, 22(3), 490-498.

9.
김소형, 박재일, 정진수, 이혜정, 권용주, 박국태(2005). 과학자에 대한 초등학교 일반 학생과 과학 영재반 학생의 인식 비교 분석. 한국과학교육학회지, 24(1), 1-8.

10.
김수겸, 유미현(2012). 중학교 과학영재 학생과 일반학생의 직업가치관과 과학 진로지향도 비교. 한국과학교육학회지, 32(7), 1222-1240.

11.
김현영, 박수경, 김영민(2012). 과학자, 기술자, 공학자에 대한 중학생들의 이미지와 인식 비교. 한국과학교육학회지, 32(1), 64-81.

12.
김현정, 유준희(2006). 과학 영재 학생들의 진로 선택 과정에 영향을 주는 과학 영재 캠프의 요인 분석. 한국과학교육학회지, 26(2), 268-278.

13.
민경아, 유미현, 고호경(2011). 수학영재교육 관련 국내 연구 동향 분석. 한국학교수학회논문집, 14(3), 393-421.

14.
박경진, 정덕호, 조규성(2013). 언어네트워크분석을 이용한 야외지질학습 전후의 퇴적암에 대한 개념 구조 변화 분석. 한국지구과학회지, 34(2), 173-186.

15.
박동욱, 최상준, 변혜정, 김양호, 김수근, 하권철, 강태선(2013). 산업안전보건분야에서 표준 직업분류(Standard Occupational Classification, SOC) 활용 사례 고찰 및 향후 국내 도입 방안 제언. 한국산업위생학회지, 23(1): 11-19.

16.
박종석, 심규철, 육근철(2001). 과학영재들의 과학과 과학자에 대한 인식 조사. 영재교육연구, 11(3), 85-97.

17.
손동원(2002). 사회 네트워크 분석. 서울 : 경문사

18.
양태연, 한기순, 박인호(2010). 대학부설 과학영재교육원 수료생들이 인식하는 영재교육의 의미. 영재교육연구, 17(2), 463-493.

19.
우새미(2015). 과학영재교육정책의 진화, 1968-2012: 과학기술인력정책과 영재교육정책의 상호작용. 영재교육연구, 25(2), 279-298.

20.
유순화, 윤경미, 강승희(2006). 과학영재 중학생과 일반 중학생의 성별과 학년에 따른 진로성숙도의 차이. 상담학연구, 7(2), 399-415.

21.
유형근(2010). 초등 영재의 진로성숙도 향상을 위한 집단상담 프로그램 개발. 학습자중심교과교육연구, 10(2), 241-266.

22.
이시예, 이형철(2013). 융합 인재 교육(STEAM)을 적용한 과학수업이 초등학생의 창의성과 과학 관련 태도에 미치는 영향. 초등과학교육, 32(1), 60-70.

23.
이준기, 하민수(2012). 언어 네트워크 분석법을 통한 중학교 과학영재들의 사실, 가설, 이론, 법칙과 과학적인 것의 의미에 대한 인식 조사. 한국과학교육학회지, 32(5), 823-840.

24.
이지애, 박수경, 김영민(2012). 과학영재의 이공계 대학 진로선택에 영향을 미치는 교육적 요인 분석. 한국과학교육학회지, 32(1), 15-29.

25.
이지연, 조현주, 윤지원(2014). 제 18대, 19대 대표발의안을 중심으로 본 국회의원 및 상임위원회의 입법활동에 대한 네트워크 분석. 디지털융복합연구, 12(2), 11-25.

26.
장주희, 한상근, 이지연, 서용석 (2013). 시나리오 기법을 이용한 미래의 직업생활 분석: 직업교육 관점을 중심으로. 직업교육연구, 32(4), 41-58.

27.
정덕호 ,박선옥 ,유효현 ,박정주(2014). 과학영재를 둔 어머니들의 영재성에 대한 인식. 영재교육연구, 24(4), 561-576.

28.
최경희(1995). 중.고등학생들의 과학-기술-사회(STS)에 관련된 문제와 STS 교육에 관한 인식조사. 한국과학교육학회지, 15(1), 73-79.

29.
최연철(2012). 유아의 또래관계 변화에 대한 사회연결망 분석. 교원교육, 28(3), 159-174.

30.
하민수, 김미영, 박경화, 이준기(2012). 일반고 학생들과의 비교 분석을 통한 자연과학고 학생들의 과학 동기 수준 및 구조 분석. 한국과학교육학회, 32(5), 866-878.

31.
하민수, 이준기(2012a). 과학 동기의 요인 구조 및 성별과 선호 계열별 과학 동기 차이 분석. 중등교육연구, 60(1), 1-20.

32.
하민수, 이준기(2012b). 기초과학과 응용과학의 융합에 관한 학생들의 이해와 관련된 변인분석. 한국과학교육학회, 32(2), 320-330.

33.
황희숙, 강승희, 황순영(2010). 과학영재의 진로선택 어려움에 관한 질적연구. 특수아동교육연구, 12(3), 351-368.

34.
Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261-295. crossref(new window)

35.
Archer, L., Dewitt, J., Osborne, J., Dillion, J., Willis, B., & Wong, B. (2010). “Doing” science vs. “Being a scientist”: Examining 10/11-years old schoolchildren's constructions of science through the lens of identity. Science Education, 94, 617-639. crossref(new window)

36.
Aschbacher, P. R., Ing, M., & Tsai, S. M. (2014). Is science me? Exploring middle school students' STE-M career aspirations. Journal of Science Education and Technology, 23(6), 735-743. crossref(new window)

37.
Bodzin, A. & Gegringer, M. (2001). Breaking science stereotypes. Science and Children, 38(4), 36-41.

38.
Borgatti, S. P., & Everett, M. G. (1999). Models of core/periphery structures. Social Networks, 21, 375-395.

39.
Campbell, T., Lee, H., Kwon, H., & Park, K. (2012). Students motivation and interests as proxies for forming STEM identities. 한국과학교육학회지, 32(3), 532-540.

40.
Choi, K., Lee, H., Shin, N., Kim, S. W., & Krajcik, J. (2011). Re-Conceptualization of Scientific Literacy in South Korea for the 21st Century. Journal of Research in Science Teaching, 48(6), 670-697. crossref(new window)

41.
Collins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic processing. Psychological Review, 82(6), 407-428. crossref(new window)

42.
diSessa, A. A. (2008). A bird's-eye view of the "pieces" vs. "coherence" controversy. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35-60). New York: Routledge.

43.
Doerfel, M. L., & Barnett, G. A. (1999). A semantic network analysis of the international communication association. Human Communication Research, 25(4), 589-603. crossref(new window)

44.
Fisher, K. (1990). Semantic networking: The newkids on the block. Journal of Research in Science Teaching, 27(10), 1001-1018. crossref(new window)

45.
Flick, L. (1990). Scientist in residence program improving children's image of science and scientist. School Science and Mathematics, 90(3), 204-214. crossref(new window)

46.
Glynn, S. M., Brickman, P, Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of research in science teaching, 48(10), 1159-1176. crossref(new window)

47.
Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2007). Nonscience majors learning science: A theoretical model of motivation. Journal of Research in Science Teaching, 44, 1088-1107. crossref(new window)

48.
Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teaching, 46(2), 127-146. crossref(new window)

49.
Grunspan, D. Z., Wiggins, B. L., & Goodreau, S. M. (2014). Understanding classrooms through social network analysis: A primer for social network analysis in education research. CBE-Life Science Education, 13, 167-178.

50.
Hadden, W. C., Kravet, N., & Muntaner, C. (2004). Descriptive dimensions of US occupations with data from the O*NET. Social Science Research, 33, 64-78. crossref(new window)

51.
Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions. The Journal of the Learning Sciences, 5(2), 97-127. crossref(new window)

52.
Hovardas, T., & Korfiatis, K. J. (2006). Word associations as a tool for assessing conceptual change in science education. Learning and instruction, 16, 416-432. crossref(new window)

53.
Hsu, P. L., Roth, W. M., Marshall, A., & Guenette, F. (2009). To be or not to be? Discursive resources for (Dis-)identifying with science-related careers. Journal of Research in Science Teaching, 46(10), 1114-1136. crossref(new window)

54.
Laugksch, C. R. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94. crossref(new window)

55.
Leavitt, H. J. (1951). Some effects of certain communication patterns on group performance. The Journal of Abnormal and Social Psychology, 46(1), 38-50. crossref(new window)

56.
Lewicki, R. J., Gray, B., & Elliot, M.. (2003). Making sense of intractable environmental conflicts: Concepts and cases. Washington D. C.: Island Press.

57.
Liu, C., & Yager, R. E. (1996). Science/Technology/Society as reform in science education. Albany: State University of New York Press.

58.
Malyn-Smith, J., & Lee, I. (2012). Application of the occupational analysis of computational thinking-enabled STEM professional as a program assessment. Journal of Computational Science Education, 3(1), 2-10. crossref(new window)

59.
McComas, W. F. (1999). The nature of science in science education raionale and strategies. Netherlands: Kluwer Academic Publisher.

60.
Naomi, G. R. (1982) Images of engineering and liberal arts majors. Journal of Vocational Behavior, 20(2), 193-202. crossref(new window)

61.
Narayan, R., Park, S., Peker, D., & Suh, J. (2013). Students' images of scientists and doing science: An international comparison study. Eurasia Journal of Mathematics, Science & Technology Education, 2013, 9(2), 115-129 crossref(new window)

62.
Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(016132), 1-7

63.
Osborne, J. (2003). Attitudes towards science: a review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079. crossref(new window)

64.
Park, H. W., & Leydesdorff, L. (2004). 한국어의 내용분석을 위한 KrKwic 프로그램의 이해와 적용: Daum.net에서 제공된 지역혁신에 관한 뉴스를 대상으로. 한국자료분석학회지, 6(5), 1377-1387.

65.
Quillian, M. R. (1967). Word concepts: A theory and simulation of some basic semantic capabilities. Behavioral Sciences, 12, 410-430. crossref(new window)

66.
Sanders, M., Kwon, H., Park, K., & Lee, H. (2011). Integrative STEM(Science, Technology, Engineering, and Mathematics) education: Comtemporary trends and issues. Secondary Education Research, 59(3), 729-762.

67.
Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351-380. crossref(new window)

68.
Shamos, M. H. (1995). The myth of scientific literacy. Rutgers, NJ: Rutgers University Press.

69.
Shin, E. S., An, B. G., & Lee, S. M. (2014). Comparative analysis of kindergarten teachers, elementary school teachers and child care workers based on ISCO and KSCO. Early Childhood Education Research & Review, 18(5), 127-152.

70.
Simpson, R. D., Koballa, T. R., Oliver, J. S., & Crawley, F. E. (1994). Research on the affective dimension of science learning. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 211-234).

71.
Smith, W. S. (1987). Foward: The search for excellence in science teaching and career awareness (ERIC Document Reproduction Service No. ED 281723).

72.
Stuckey, M., Hofstein, A., Mamlok-Naaman, R., Eliks, I. (2013). The meaning of 'relevance' in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1-34.

73.
Wassetman, S., & Faust, K. (1994). Social network analysis: Methods and applications. The Press Syndicate of the University of Cambridge.

74.
Woolnough, B. E. (1994). Factors affecting students' choice of science and engineering. International Journal of Science Education, 16(6), 659-676. crossref(new window)

75.
Zhou. T., Ren. J., Medo. M., Zhang. Y. (2007). Bipartite network projection and personal recommendation. Physical Review E 76(4): 046115. crossref(new window)

76.
Ziman, J. (1980). Teaching and learning about science and society. Cambridge University Press.