JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Spectral Sharpness Angle of Gamma-ray Bursts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Spectral Sharpness Angle of Gamma-ray Bursts
Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re`em; Bhat, P. Narayana; Kienlin, Andreas von; Paciesas, William S.; Preece, Robert D.;
  PDF(new window)
 Abstract
We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
 Keywords
gamma-rays;stars;gamma-ray burst;general;radiation mechanisms;non-thermal;radiation mechanisms;thermal;methods;data analysis;
 Language
English
 Cited by
1.
Prompt gamma-ray burst emission from gradual magnetic dissipation, Monthly Notices of the Royal Astronomical Society, 2017, 468, 3, 3202  crossref(new windwow)
 References
1.
Ackermann M, Ajello M, Baldini L, Barbiellini G, Baring MG, et al., Constraining the high-energy emission from gamma-ray bursts with Fermi, Astrophys. J. 754, 121-140 (2012). http://dx.doi.org/10.1088/0004-637X/754/2/121 crossref(new window)

2.
Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, et al., The large area telescope on the Fermi Gamma-Ray Space Telescope Mission, Astrophys. J. 697, 1071-1102 (2009). http://dx.doi.org/10.1088/0004-637X/697/2/1071 crossref(new window)

3.
Axelsson M, Borgonovo L, The width of gamma-ray burst spectra, Mon. Not. Roy. Astron. Soc. 447, 3105-3154 (2015). http://dx.doi.org/10.1093/mnras/stu2675 crossref(new window)

4.
Band D, Matteson J, Ford L, Schaefer B, Palmer D, et al., BATSE observations of gamma-ray burst spectra. I. Spectral diversity, Astrophys. J. 413, 281-292 (1993). http://dx.doi.org/10.1086/172995 crossref(new window)

5.
Beloborodov AM, Collisional mechanism for gamma-ray burst emission, Mon. Not. Roy. Astron. Soc. 407, 1033-1047 (2010). http://dx.doi.org/10.1111/j.1365-2966.2010.16770.x crossref(new window)

6.
Beloborodov AM, Regulation of the spectral peak in gammaray bursts, Astrophys. J. 764, 157-168 (2013). http://dx.doi.org/10.1088/0004-637X/764/2/157 crossref(new window)

7.
Beniamini P, Piran T, The emission mechanism in magnetically dominated gamma-ray burst outflows, Mon. Not. Roy. Astron. Soc. 445, 3892-3907 (2014). http://dx.doi.org/10.1093/mnras/stu2032 crossref(new window)

8.
Bhat PN, Variability time scales of long, short GRBs, eprint arXiv:1307.7618 (2013).

9.
Burgess JM, Preece RD, Baring MG, Briggs MS, Connaughton V, et al., Constraints on the synchrotron shock model for the Fermi GRB 090820A observed by Gamma-ray Burst Monitor, Astrophys. J. 741, 24-29 (2011). http://dx.doi.org/10.1088/0004-637X/741/1/24 crossref(new window)

10.
Burgess JM, Preece RD, Connaughton V, Briggs MS, Goldstein A, et al., Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models, Astrophys. J. 784, 17-34 (2014). http://dx.doi.org/10.1088/0004-637X/784/1/17 crossref(new window)

11.
Crider A, Liang EP, Preece RD, Briggs MS, Pendleton GN, et al., The spectral evolution of gamma-ray bursts, in 193rd AAS Meeting, Austin, TX, 6-9 Jan 1999.

12.
Deng W, Zhang B, Low energy spectral index, Ep evolution of quasi-thermal photosphere emission of gamma-ray bursts, Astrophys. J. 785, 112-126 (2014). http://dx.doi.org/10.1088/0004-637X/785/2/112 crossref(new window)

13.
Drenkhahn G, Spruit HC, Efficient acceleration and radiation in Poynting flux powered GRB outflows, Astron. Astrophys. 391, 1141-1153 (2002). http://dx.doi.org/10.1051/0004-6361:20020839 crossref(new window)

14.
Elliott J, Yu HF, Schmidl S, Greiner J, Gruber D, et al., Prompt emission of GRB 121217A from gamma-rays to the nearinfrared, Astron. Astrophys. 562, A100 (2014). http://dx.doi.org/10.1051/0004-6361/201322600 crossref(new window)

15.
Ford LA, Band DL, Matteson JL, Briggs MS, Pendleton GN, et al., BATSE observations of gamma-ray burst spectra. II. Peak energy evolution in bright, long bursts, Astrophys. J. 439, 307-321 (1995). http://dx.doi.org/10.1086/175174 crossref(new window)

16.
Giannios D, Prompt GRB emission from gradual energy dissipation, Astron. Astrophys. 480, 305-312 (2008). http://dx.doi.org/10.1051/0004-6361:20079085 crossref(new window)

17.
Gill R, Thompson C, Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow, Astrophys. J. 796, 81-105 (2014). http://dx.doi.org/10.1088/0004-637X/796/2/81 crossref(new window)

18.
Goldstein A, Preece RD, Mallozzi RS, Briggs MS, Fishman GJ, et al., The BATSE 5B gamma-ray burst spectral catalog, Astrophys. J. Suppl. Ser. 208, 21-50 (2013). http://dx.doi.org/10.1088/0067-0049/208/2/21 crossref(new window)

19.
Golkhou VZ, Butler NR, Uncovering the intrinsic variability of gamma-ray bursts, Astrophys. J. 787, 90-98 (2014). http://dx.doi.org/10.1088/0004-637X/787/1/90 crossref(new window)

20.
Goodman J, Are gamma-ray bursts optically thick?, Astrophys. J. Lett. 308, L47 (1986). http://dx.doi.org/10.1086/184741 crossref(new window)

21.
Greiner J, Yu HF, Krühler T, Frederiks DD, Beloborodov A, et al., GROND coverage of the main peak of gamma-ray burst 130925A, Astron. Astrophys. 568, A75 (2014). http://dx.doi.org/10.1051/0004-6361/201424250 crossref(new window)

22.
Gruber D, Goldstein A, von Ahlefeld VW, Bhat PN, Bissaldi E, et al., The Fermi GBM gamma-ray burst spectral catalog: four years of data, Astrophys. J. Suppl. Ser. 211, 12-38 (2014). http://dx.doi.org/10.1088/0067-0049/211/1/12 crossref(new window)

23.
Hu YD, Liang EW, Xi SQ, Peng FK, Lu RJ, et al., Internal energy dissipation of gamma-ray bursts observed with Swift: precursors, prompt gamma-rays, extended emission, and late X-ray flares, Astrophys. J. 789, 145-157 (2014). http://dx.doi.org/10.1088/0004-637X/789/2/145 crossref(new window)

24.
Katz JI, Low-frequency spectra of gamma-ray bursts, Astrophys. J. Lett. 432, L107-L109 (1994). http://dx.doi.org/10.1086/187523 crossref(new window)

25.
Lazzati D, Morsony BJ, Margutti R, Begelman MC, Photospheric emission as the dominant radiation mechanism in long-duration gamma-ray bursts, Astrophys. J. 765, 103-109 (2013). http://dx.doi.org/10.1088/0004-637X/765/2/103 crossref(new window)

26.
Lloyd NM, Petrosian V, Synchrotron radiation as the source of gamma-ray burst spectra, Astrophys. J. 543, 722-732 (2000). http://dx.doi.org/10.1086/317125 crossref(new window)

27.
Lyutikov M, Blandford R, Gamma Ray Bursts as Electromagnetic Outflows, eprint arXiv:0312347 (2003).

28.
Medvedev MV, Theory of “Jitter” radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks, Astrophys. J. 540, 704-714 (2000). http://dx.doi.org/10.1086/309374 crossref(new window)

29.
Meegan C, Lichti G, Bhat PN, Bissaldi E, Briggs MS, et al., The Fermi Gamma-Ray Burst Monitor, Astrophys. J. 702, 971-804 (2009). http://dx.doi.org/10.1088/0004-637X/702/1/791 crossref(new window)

30.
Meszaros P, Rees MJ, Gamma-ray bursts: multiwaveband spectral predictions for blast wave models, Astrophys. J. Lett. 418, L59-L62 (1993). http://dx.doi.org/10.1086/187116 crossref(new window)

31.
Meszaros P, Laguna P, Rees MJ, Gasdynamics of relativistically expanding gamma-ray burst sources - Kinematics, energetics, magnetic fields, and efficiency, Astrophys. J. 415, 181-190 (1993). http://dx.doi.org/10.1086/173154 crossref(new window)

32.
Paczynski B, Gamma-ray bursters at cosmological distances, Astrophys. J. Lett. 308, L43-L46 (1986). http://dx.doi.org/10.1086/184740 crossref(new window)

33.
Pe’er A, Physics of gamma-ray bursts prompt emission, Adv. Astron. 2015, 907321 (2015). http://dx.doi.org/10.1155/2015/907321 crossref(new window)

34.
Pe’er A, Ryde F, A theory of multicolor blackbody emission from relativistically expanding plasmas, Astrophys. J. 732, 49-56 (2011). http://dx.doi.org/10.1088/0004-637X/732/1/49 crossref(new window)

35.
Pe’er A, Meszaros P, Rees MJ, The observable effects of a photospheric component on GRB and XRF prompt emission spectrum, Astrophys. J. 642, 995-1003 (2006). http://dx.doi.org/10.1086/501424 crossref(new window)

36.
Peng FK, Liang EW, Wang XY, Hou SJ, Xi SQ, et al., Photosphere emission in the X-ray flares of Swift gamma-ray bursts, implications for the fireball properties, Astrophys. J. 795, 155-169 (2014). http://dx.doi.org/10.1088/0004-637X/795/2/155 crossref(new window)

37.
Piran T, Gamma-ray bursts and the fireball model, Phys. Rep. 314, 575-667 (1999). http://dx.doi.org/10.1016/S0370-1573(98)00127-6 crossref(new window)

38.
Preece RD, Briggs MS, Mallozzi RS, Pendleton GN, Paciesas WS, et al., The synchrotron shock model confronts a “Line of Death” in the BATSE Gamma-Ray Burst Data, Astrophys. J. Lett. 506, L23-L26 (1998). http://dx.doi.org/10.1086/311644 crossref(new window)

39.
Preece RD, Briggs MS, Giblin TW, Mallozzi RS, Pendleton GN, et al., On the consistency of gamma-ray burst spectral indices with the synchrotron shock model, Astrophys. J. 581, 1248-1255 (2002). http://dx.doi.org/10.1086/344252 crossref(new window)

40.
Rees MJ, Meszaros P, Relativistic fireballs: energy conversion and time-scales, Mon. Not. Roy. Astron. Soc. 258, 41P-43P (1992). http://dx.doi.org/10.1093/mnras/258.1.41P crossref(new window)

41.
Rees MJ, Meszaros P, Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J. 430, L93-L96 (1994). http://dx.doi.org/10.1086/187446 crossref(new window)

42.
Ryde F, Pe’er A, Nymark T, Axelsson M, Moretti E, et al., Observational evidence of dissipative photospheres in gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 415, 3693-3705 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.18985.x crossref(new window)

43.
Starling RLC, Page KL, Pe’er A, Beardmore AP, Osborne JP, A search for thermal X-ray signatures in gamma-ray bursts – I. Swift bursts with optical supernovae, Mon. Not. Roy. Astron. Soc. 427, 2950-2964 (2012). http://dx.doi.org/10.1111/j.1365-2966.2012.22116.x crossref(new window)

44.
Tavani M, Shock high-energy emission mechanisms applied to SGRs and GRBs, Astrophys. Space Sci. 231, 181-186 (1995). http://dx.doi.org/10.1007/BF00658612 crossref(new window)

45.
Tavani M, A shock emission model for gamma-ray bursts. II. Spectral properties, Astrophys. J. 466, 768-778 (1996). http://dx.doi.org/10.1086/177551 crossref(new window)

46.
Thompson C, A model of gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 270, 480-498 (1994). http://dx.doi.org/10.1093/mnras/270.3.480 crossref(new window)

47.
Uhm ZL, Zhang B, Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism, Nature Phys. 10, 351-356 (2014). http://dx.doi.org/10.1038/nphys2932 crossref(new window)

48.
van Eerten HJ, Simulation and physical model based gamma-ray burst afterglow analysis, J. High Energy Astrophys. 7, 23-24 (2015). http://dx.doi.org/10.1016/j.jheap.2015.04.004 crossref(new window)

49.
Vurm I, Beloborodov AM, Radiative transfer models for gamma-ray bursts, eprint arXiv:1506.01107 (2015).

50.
Vurm I, Beloborodov AM, Poutanen J, Gamma-ray bursts from magnetized collisionally heated jets, Astrophys. J. 738, 77-89 (2011). http://dx.doi.org/10.1088/0004-637X/738/1/77 crossref(new window)

51.
Yu HF, Greiner J, van Eerten H, Burgess JM, Bhat PN, et al., Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor, Astron. Astrophys. 573, A81 (2015a) http://dx.doi.org/10.1051/0004-6361/201424858 crossref(new window)

52.
Yu HF, van Eerten HJ, Greiner J, Sari R, Bhat PN, et al., The sharpness of gamma-ray burst prompt emission spectra, Astron. Astrophys. 583, A129 (2015b). http://dx.doi.org/10.1051/0004-6361/201527015 crossref(new window)

53.
Yu HF, Preece RD, Greiner J, Bhat PN, Bissaldi E, et al., The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years, Astron. Astrophys. 588, A135 (2016). http://dx.doi.org/10.1051/0004-6361/201527509 crossref(new window)

54.
Zhang B, Gamma-ray burst prompt emission, Int. J. Mod. Phys. D 23, 1430002 (2014). http://dx.doi.org/10.1142/S021827181430002X crossref(new window)