JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dust Disks Around Young Stellar Objects
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dust Disks Around Young Stellar Objects
Suh, Kyung-Won;
  PDF(new window)
 Abstract
To reproduce the spectral energy distributions (SEDs) of young stellar objects (YSOs), we perform radiative transfer model calculations for the circumstellar dust disks with various shapes and many dust species. For eight sample objects of T Tauri and Herbig Ae/Be stars, we compare the theoretical model SEDs with the observed SEDs described by the infrared space observatory and Spitzer space telescope spectral data. We use the model, CGPLUS, for a passive irradiated circumstellar dust disk with an inner hole and an inner rim for the eight sample YSOs. We present model parameters for the dust disk, which reproduce the observed SEDs. We find that the model requires a higher mass, luminosity, and temperature for the central star for the Herbig Ae/Be stars than those for the T Tauri stars. Generally, the outer radius, total mass, thickness, and rim height of the theoretical dust disk for the Herbig Ae/Be stars are larger than those for the T Tauri stars.
 Keywords
stars;pre-main sequences;infrared;stars;circumstellar matter;dust;extinction;
 Language
English
 Cited by
 References
1.
Bertie JE, Labbé HJ, Whalley E, Absorptivity of ice in the range 4000-30 cm-1, J. Chem. Phys. 50, 4501-4520 (1969). http://dx.doi.org/10.1063/1.1670922 crossref(new window)

2.
Bertout C, T Tauri stars: wild as dust, Annu. Rev. Astron. Astrophys. 27, 351-395 (1989). http://dx.doi.org/10.1146/annurev.aa.27.090189.002031 crossref(new window)

3.
Bohren CF, Huffman DR, Absorption and scattering of light by small particles (Wiley, New York, 1983).

4.
Bouwman J, Lawson WA, Dominik C, Feigelson ED, Henning Th, et al., Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the η Chamaeleontis Cluster, Astrophys. J. 653, L57-L60 (2006). http://dx.doi.org/10.1086/510365 crossref(new window)

5.
Bouwman J, Henning Th, Hillenbrand LA, Meyer MR, Pascucci I, et al., The formation and evolution of planetary systems: grain growth and chemical processing of dust in T Tauri systems, Astrophys. J. 683, 479-498 (2008). http://dx.doi.org/10.1086/587793 crossref(new window)

6.
Cambrésy L, Copet E, Epchtein N, de Batz B, Borsenberger J, et al., New young stellar object candidates in the Chamaeleon I molecular cloud discovered by DENIS, Astron. Astrophys. 338, 977-987 (1998).

7.
Chiang EI, Goldreich P, Spectral energy distributions of T Tauri stars with passive circumstellar disks, Astrophys. J. 490, 368-376 (1997). http://dx.doi.org/10.1086/304869 crossref(new window)

8.
Dullemond CP, Dominik C, Natta A, Passive irradiated circumstellar disks with an inner hole, Astrophys. J. 560, 957-969 (2001). http://dx.doi.org/10.1086/323057 crossref(new window)

9.
Fabian D, Jäger C, Henning Th, Dorschner J, Mutschke H, Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica, Astron. Astrophys. 364, 282-292 (2000).

10.
Fabian D, Henning T, Jäger C, Mutschke H, Dorschner J, et al., Steps toward interstellar silicate mineralogy VI. Dependence of crystalline olivine IR spectra on iron content and particle shape, Astron. Astrophys. 378, 228-238 (2001). http://dx.doi.org/10.1051/0004-6361:20011196 crossref(new window)

11.
Hartmann L, Accretion processes in star formation (Cambridge University Press, New York, 2009).

12.
Ivezić A, Elitzur M, Self-similarity and scaling behaviour of infrared emission from radiatively heated dust. I. Theory, Mon. Not. Roy. Astron. Soc. 287, 799-811 (1997). crossref(new window)

13.
Jäger C, Molster FJ, Dorschner J, Henning Th, Mutschke H, et al., Steps toward interstellar silicate mineralogy. IV. The crystalline revolution, Astron. Astrophys. 339, 904-916 (1998).

14.
Juhász A, Bouwman J, Henning Th, Acke B, van den Ancker ME, et al., Dust evolution in protoplanetary disks around Herbig Ae/Be stars-the Spitzer view, Astrophys. J. 721, 431-455 (2010). http://dx.doi.org/10.1088/0004-637x/721/1/431 crossref(new window)

15.
Lawson WA, Crause LA, Mamajek EE, Feigelson ED, The η Chamaeleontis cluster: photometric study of the ROSAT-detected weak-lined T Tauri stars, Mon. Not. Roy. Astron. Soc. 321, 57-66 (2001). http://dx.doi.org/10.1046/j.1365-8711.2001.03967.x crossref(new window)

16.
Luhman KL, Allen LE, Allen PR, Gutermuth RA, Hartmann L, et al., The disk population of the Chamaeleon I star-forming region, Astrophys. J. 675, 1375-1406 (2008). http://dx.doi.org/10.1086/527347 crossref(new window)

17.
Malfait K, Bogaert E, Waelkens C, An ultraviolet, optical and infrared study of Herbig Ae/Be Stars, Astron. Astrophys. 331, 211-223 (1998).

18.
Meeus G, Waters LBFM, Bouwman J, van den Ancker ME, Waelkens C, et al., ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: towards an understanding of dust processing, Astron. Astrophys. 365, 476-490 (2001). http://dx.doi.org/10.1051/0004-6361:20000144 crossref(new window)

19.
Megeath ST, Hartmann L, Luhman KL, Fazio GG, Spitzer/IRAC photometry of the η Chameleontis association, Astrophys. J. 634, L113-L116 (2005). http://dx.doi.org/10.1086/498503 crossref(new window)

20.
Mundt R, Bastian U, UBV photometry of Young emission-line objects, Astron. Astrophys. Suppl. Ser. 39, 245-250 (1980).

21.
Murakami H, Baba H, Barthel P, Clements DL, Cohen M, et al., The infrared astronomical mission AKARI, Publ. Astron. Soc. Jpn. 59, S369-S376 (2007). http://dx.doi.org/10.1093/pasj/59.sp2.S369 crossref(new window)

22.
Olofsson J, Augereau JC, van Dishoeck EF, Merín B, Lahuis F, et al., C2D Spitzer-IRS spectra of disks around T Tauri stars IV. Crystalline silicates, Astron. Astrophys. 507, 327-345 (2009). http://dx.doi.org/10.1051/0004-6361/200912062 crossref(new window)

23.
Olofsson J, Augereau JC, van Dishoeck EF, Merín B, Grosso N, et al., C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition, Astorn. Astrophys. 520, A39 (2010). http://dx.doi.org/10.1051/0004-6361/200913909 crossref(new window)

24.
Shevchenko VS, Herbst W, The search for rotational modulation of T Tauri stars in the Ophiuchus dark cloud, Astron. J. 116, 1419-1431 (1998). http://dx.doi.org/10.1086/300496 crossref(new window)

25.
Sicilia-Aguilar A, Bouwman J, Juhasz A, Henning Th, Roccatagliata V, et al., The long-lived disks in the η Chamaeleontis cluster, Astrophys. J. 701, 1188-1203 (2009). http://dx.doi.org/10.1088/0004-637x/701/2/1188 crossref(new window)

26.
Simon M, Ghez AM, Leinert Ch, Cassar L, Chen WP, et al., A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions, Astrophys. J. 443, 625-637 (1995). http://dx.doi.org/10.1086/175554 crossref(new window)

27.
Skrutskie MF, Cutri RM, Stiening R, Weinberg MD, Schneider S, et al., The Two Micron All Sky Survey (2MASS), Aston. J. 131, 1163-1183 (2006). http://dx.doi.org/10.1086/498708 crossref(new window)

28.
Spangler C, Sargent AI, Silverstone MD, Becklin EE, Zuckerman B, Dusty debris around solar-type stars: temporal disk evolution, Astrophys. J. 555, 932-944 (2001). http://dx.doi.org/10.1086/321490 crossref(new window)

29.
Suh KW, Optical properties of the silicate dust grains in the envelopes around asymptotic giant branch stars, Mon. Not. Roy. Astron. Soc. 304, 389-405 (1999). http://dx.doi.org/10.1046/j.1365-8711.1999.02317.x crossref(new window)

30.
Suh KW, Optical properties of the carbon dust grains in the envelopes around asymptotic giant branch stars, Mon. Not. Roy. Astron. Soc. 315, 740-750 (2000). http://dx.doi.org/10.1046/j.1365-8711.2000.03482.x crossref(new window)

31.
Suh KW, Dust around Herbig Ae/Be stars, J. Kor. Astron. Soc. 44, 13-21 (2011). http://dx.doi.org/10.5303/jkas.2011.44.1.13 crossref(new window)

32.
Suh KW, Astrophysics of dusty steller winds from AGB stars, J. Kor. Astron. Soc. 47, 219-233 (2014). http://dx.doi.org/10.5303/JKAS.2014.47.6.219 crossref(new window)

33.
Suh KW, A model for the dust envelope of the silicate carbon star IRAS 09425-6040, Astrophys. J. 819, 61-72 (2016). http://dx.doi.org/10.3847/0004-637X/819/1/61 crossref(new window)

34.
Suh KW, Kwon YJ, Dust around T Tauri stars, J. Astron. Space Sci. 28, 253-260 (2011). http://dx.doi.org/10.5140/JASS.2011.28.4.253 crossref(new window)

35.
Tamanai A, Mutschke H, Blum J, Posch Th, Koike C, et al., Morphological effects on IR band profiles - Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars, Astron. Astrophys. 501, 251-267 (2009). http://dx.doi.org/10.1051/0004-6361/200911614 crossref(new window)

36.
Waters LBFM, Waelkens C, Herbig Ae/Be stars, Annu. Rev. Astron. Astrophys. 36, 233-266 (1998). http://dx.doi.org/10.1146/annurev.astro.36.1.233 crossref(new window)

37.
Whitney BA, Wood K, Bjorkman JE, Wolff MJ, Two-dimensional radiative transfer in protostellar envelopes. I. Effects of geometry on class I sources, Astrophys. J. 591, 1049-1063 (2003). http://dx.doi.org/10.1086/375415 crossref(new window)

38.
Wright EL, Eisenhardt PRM, Mainzer AK, Ressler ME, Cutri RM, et al., The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance, Astron. J. 140, 1868-1881 (2010). http://dx.doi.org/10.1088/0004-6256/140/6/1868 crossref(new window)