Advanced SearchSearch Tips
Effect of High Temperature and Pressure Conditions on the Combustion Characteristics of n-butanol and n-heptane Fuel
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of ILASS-Korea
  • Volume 21, Issue 1,  2016, pp.29-36
  • Publisher : Institute for Liquid Atomization and Spray Systems-Korea
  • DOI : 10.15435/JILASSKR.2016.21.1.29
 Title & Authors
Effect of High Temperature and Pressure Conditions on the Combustion Characteristics of n-butanol and n-heptane Fuel
Lim, Young Chan; Suh, Hyun Kyu;
  PDF(new window)
The effect of high ambient temperature and pressure conditions on the combustion performance of n-butanol, n-heptane and its mixing fuel (BH 20) were studied in this work. To reveal this, the closed homogeneous reactor model applied and 1000-1200 K of the initial temperature, 20-30 atm of initial pressure and 1.0 of equivalence ratio were set to numerical analysis. It was found that the results of combustion temperature was increased and the ignition delay was decreased when the ambient conditions were elevated since the combustion reactivity increased at the high ambient conditions. On the contrary, under the low combustion temperature condition, the combustion pressure was more influenced by the ambient temperature in the same ambient conditions. In addition, the total mass and the mass density of tested fuels were influenced by the ambient pressure and temperature. Also, soot generation of mixing fuel was decreased than n-heptane fuel due to the oxygen content of n-butanol fuel.
Constant-volume fixed mass reactor;Growth rate of carbon;Ignition delay;;Soot;
 Cited by
J. C. Kim, "Diesel Vehicle Particulate Status", Auto Journal of KSAE, Vol. 34, No. 3, 2012, pp. 59-64.

S. S. Moon, "Engine Research Trend in Japan : Diesel $NO_X$ After-treatment Technology", Auto Journal of KSAE, Vol. 36, No. 3, 2014, pp. 42-47.

S. H. Bae, S. C. Hong, "Simultaneous Removal of Soot and $NO_X$ from Diesel Engine Exhaust Gas", The 2007 Environmental Societies Joint Conference, 2007, pp. 1772-1776.

C. M. Kwang, "Development of Partial Zero Emission Technology for Future Vehicle", Auto Journal of KSAE, Vol. 31, No. 2, 2009, pp. 104-111.

J. Y. Cha, J. B. Son, J. I. Kim, M. S. Hong, "Exhaust Gas Storage and Recombustion system for zero emission at cold start", KSAE Annual Conference Proceedings, 2001, pp. 62-72.

K. S. Lee, W. S. Kang, H. N. Kim, B. C. Choi, "Characteristics of simultaneous removal of $NO_X$ and PM over a combined system of DPF/LNT+DPF/SCR", KSAE Annual Conference Proceedings, 2012, pp. 350-354.

W. S. Kang, B. C. Choi, "Characteristics of simultaneous removal of $NO_X$ and PM over a hybrid system of LNT/DPF + SCR/DPF in a single cylinder diesel engine", KSAE Annual Conference Proceedings, 2015, pp. 172-173.

S. H. Min, H. K. Suh, "Effect of operating conditions on the combustion and emission characteristics in small HSDI CI engine", Journal of KSMT, Vol. 17, No. 4, pp. 699-706.

S. H. Min, H. K. Suh, "Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance", Journal of ILASS-KOREA, Vol. 20, No. 4, pp. 254-260.

Y. C. Lim, H. G. Suh, "Numerical study on the combustion performance of n-butanol fuel in accordance with the n-heptane fuel mixture ratio", The 50th KOSCO Symposium, 2015, pp. 87-89.

Y. G. Oh, "Bio Fuel Production Using Micro Algae", Journal of Korea Organic Resource Recycling Association, Vol. 20, No. 4, 2012, pp. 41-58.

J. P. Cha, S. H. Park, C. S. Lee, S. W. Park, "Study on Spray and Exhaust Emission Characteristics of DMEBiodiesel Blended Fuel in Compression Ignition Engine", Trans. Korean Soc. Mech. Eng. B, Vol. 35. No. 1, 2011, pp. 67-73.

D. S. Jeong, Y. G. Lee, G. F. Moon, "Alternative Diesel Fuel, GTL(Gas-to-Liquids)", Auto Journal of KSAE, Vol. 32, No. 4, 2010, pp. 53-57.

J. H. Song, K. J. Kang, Z. Yang, X. C. Lu, G. M. Choi, D. J. Kim, "Investigation of the Ignition delay time with Changing the Blending Ratio of the Binary Fuel (n-heptane/n-butanol) at the EGR Condition", KSAE Annual Conference Proceedings, 2013, pp. 27-35.

J. X. Zhang, S. D. Niu, Y. J. Zhang, C. L. Tang, X. Jiang, E. J. Hu, Z. H. Huang, "Experimental and modeling study of the auto-ignition of n-heptane/butanol mixtures", Combustion and Flame, Vol. 160, No. 1, 2013, pp. 31-39. crossref(new window)

Y. C. Lim, H. G. Suh, "Effect of Mixing Ratio of nheptane Fuel on the Combustion Characteristics of nbutanol Fuel", J. Korean Soc. Combust, Vol. 20, No. 3, 2015, pp. 21-26. crossref(new window)

H. Wang, R. D. Reitz, M. F. Yao, B. B. Yang, Q. Jiao, L. Qiu, "Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction", Combustion and Flame, Vol. 160, Issue 3, 2013, pp. 504-519. crossref(new window)

P. Ho, C. P. Chou, "Soot nucleation and growth reaction mechanism", Reaction Design, 2006.

E. Meeks, C. P. Chou, "Accurate Predictions of Chemical Phenomena in Chemically Reacting Flows", Proceedings of European Conference on Computational Fluid Dynamics, 2006.

B. W. Weber, K. Kumar, Y. Zhang, C. J. Sung, "Autoignition of n-butanol at elevated pressure and low-tointermediate temperature", Combustion and Flame, Vol. 158, Issue 5, 2011, pp. 809-819. crossref(new window)

S. L. Li, Y. Jiang, W. T. Chen, "Numerical Analysis on the Characteristics of Soot Particles in $C_2H_4/CO_2/O_2/N_2$ Combustion", Chinese Journal of Chemical Engineering, Vol. 21, Issue 3, 2013, pp. 238-245. crossref(new window)

S. Deng, J. A. Koch, M. E. Mueller, C. K. Law, "Sooting limits of nonpremixed n-heptane, n-butanol, and methyl butanoate flames : Experimental determination and mechanistic analysis", Journal of Fuel, Vol. 136, 2014, pp. 122-129. crossref(new window)