Advanced SearchSearch Tips
Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets
Kim, Taehyung; Kumar, Sunil; Kim, Yonggyun;
  PDF(new window)
Physiological plasticity of insects can be closely related with their epigenetic change. This hypothesis was tested using a polyphagous lepidopteran insect, Spodoptera exigua, by assessing the effects of different diets on development and DNA methylation. Three different diets (Welsh onion (WO), Chinese cabbage (CC), artificial diet (AD)) were assessed by feeding a cohort of larvae from neonate to last instar. There were significant differences in larval developmental rate, pupal weight and adult emergence according to diet treatments. AD-fed larvae exhibited the fastest developmental rate along with the highest pupal weight and adult emergence. Among natural hosts, WO was more favorable for development of S. exigua than CC. Total hemolymph proteins and sugars in the last instar larvae were varied among different diets. Gene expression of an insulin-like peptide (SeILP1) presumably associated with development was also varied among diets. Cytosine methylation of genomic DNA was assessed using a monoclonal antibody. Genomic DNA of S. exigua larvae was methylated. DNA methylation was apparently varied among different diet-fed larvae. The facts that a cohort of S. exigua was differentiated in developmental rate and cytosine methylation by different diets suggest that epigenetic factor(s) may play a crucial role in the physiological plasticity.
Spodoptera exigua;Diet;DNA methylation;Development;
 Cited by
Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H., Tumlinson, J.H., 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945-949. crossref(new window)

Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. crossref(new window)

Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21. crossref(new window)

Bones, A.M., Rossiter, J.T., 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant. 97, 194-208. crossref(new window)

Borsatti, F., Mandrioli, M., 2004. The structure of insect DNA methyltransferase 2 (DNMT2) DNA binding domain is responsible for the non-CpG methylation in insect genomes. Caryology 57, 305-311. crossref(new window)

Bradford, M.M., 1972. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye finding. Anal. Biochem. 72, 248-254.

Brewer, M.J., Trumble, J.T., 1991. Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 84, 1638-1644. crossref(new window)

Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observation of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124.

Frelichowski, J.E., Jr., Juvik, J.A., 2001. Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94, 1249-1259. crossref(new window)

Glastad, K.M., Hunt, B.G., Yi, S.V., Goodisman, M.A.D., 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553-565. crossref(new window)

Goh, H.G., Choi, J.S., Eom, K.B., Choi, K.M., Kim, J.W., 1993. Seasonal fluctuation of beet armyworm, Spodoptera exigua (Hübner), adult and larva. Kor. J. Appl. Entomol. 32, 389-394.

Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.

Goh, H.G., Park, J.D., Choi, Y.M., Choi, K.M., Park, I.S., 1991. The host plants of beet armyworm, Spodoptera exigua (Hübner), (Lepidoptera: Noctuidae) and its occurrence. Kor. J. Appl. Entomol. 30, 111-116.

Greenberg, S.M., Sappington, T.W., Legaspi, B.C. Jr., Liu, T.X., Setamou, M., 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Am. Entomol. Soc. Am. 94, 566-575. crossref(new window)

Greenberg, S.M., Sappington, T.W., Setamou, M., Liu, T.X., 2002. Beet armyworm (Lepidoptera: Noctuidae) host plant preferences for oviposition. Environ. Entomol. 31, 142-148. crossref(new window)

Han, S., Lee, S., Kim, Y., 1999. Pathogenicity and multiplication of entomopathogenic nematode, Steinernema carpocapsae Weiser, on beet armyworm, Spodoptera exigua (Hübner) and tobacco cutworm, Spodoptera litura (Fabricius). Kor. J. Appl. Entomol. 38, 255-260.

Jiang, X.F., Luo, L.Z., Hu, Y., 1999. Influence of larval diets on development, fecundity and flight capacity of the beet armyworm, Spodoptera exigua. Acta Entomol. Sin. 42, 270-276.

Kim, Y., Hong, Y., 2015. Regulation of hemolymph trehalose level by an insulin-like peptide through diel feeding rhythm of the beet armyworm, Spodoptera exigua. Peptides 68, 91-98. crossref(new window)

Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). environ. Entomol. 26, 1117-1123. crossref(new window)

Kim, Y., Lee, J., Kang, S., Han, S., 1998. Age variation in insecticide susceptibility and biochemical changes of beet armyworm, Spodoptera exigua (Hubner). J. Asia Pac. Entomol. 1, 109-113. crossref(new window)

Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827-1830. crossref(new window)

Lu, Z.Q., Xu, Y.H., 1998. The consideration of the incessant outbreak of the cotton bollworm, Helicoverpa armigera. Entomol. Knowl. 35, 132-136.

Mascarenhas, V.J., Graves, J.B., Leonard, B.R., Burris, E., 1998. Susceptibility of field populations of beet armyworm (Lepidoptera: Noctuidae) to commercial and experimental insecticides. J. Econ. Entomol. 91, 827-833. crossref(new window)

Moar, W.J., Pusztai-Carey, M., Van Faassen, H., Bosch, D., Frutos, R., Rang, C., Luo, K., Adang, M.J., 1995. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61, 2086-2092.

Park, J.D., Goh, H.G., 1995. Control of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), using synthetic sex pheromone. I. Control by mass trapping in Allium fistulosum field. Kor. J. Appl. Entomol. 34, 45-49.

Painter, R.H., 1951. Insect resistance in crop plants. Macmillan, New York.

Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., Meijer, J., 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42, 93-113. crossref(new window)

Ratzka, A., Vogel, H., Kliebenstein, D., Mitchell-Olds, T., Kroymann, J., 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99, 11223-11228. crossref(new window)

Saeed, S., Sayyed A.H., Ahmad, I., 2010. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). J. Pest Sci. 83, 165-172. crossref(new window)

SAS Institute, Inc., 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.

Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50, 171-178. crossref(new window)

Sequiera, R., Dixon, A.F.G., 1996. Life history responses to host quality changes and competition in the Turkey-oak aphid. Eur. J. Entomol. 93, 53-58.

Singh, O.P., Parihar, S.B.B., 1988. Effect of different hosts on the development of Heliothis armigera (Hubner). Bull. Entomol. Res. 29, 2168-2172.

Thakur, A., Kaur, S., Kaur, A., Singh, V., 2013. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol. 42, 240-246. crossref(new window)

Thompson, S.N., 2003. Trehalose: the insect blood sugar. Adv. Insect Physiol. 31, 205-283. crossref(new window)

Wang, Y., Jorda, M., Jones, P.L., Maleszka, R., Ling, X., Robertson, H.M., Mizzen, C.A., Peinado, M.A., Robinson, G.E., 2006. Functional CpG methylation system in a social insect. Science 314, 645-647. crossref(new window)

Williams, M.R., 1990. Cotton insect losses 1998. In: Dugger, D., Richter, D. (Eds.), Proceedins, Beltwide Cotton Conference. National Cotton Council. Memphis. TN. pp. 785-806.

Wu, Q., Brown, M.R., 2006. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51, 1-24. crossref(new window)

Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., Zhang, H., Zhang, G., Li, D., Dong, Y., 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol. 28, 516-520. crossref(new window)

Xiang, H., Li, X. Dai, F. Xu, X. Tan, A. Chen, L. Zhang, G. Ding, Y. Li, Q. Ligan, J. Wailed, A. Guo, Q. XGA, Q. Wang, J. Wang, W. 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics 14, 646. crossref(new window)