Advanced SearchSearch Tips
Acoustical backscattering characteristic depending on the changes in the body of sandfish (Arctoscopus japonicus)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Acoustical backscattering characteristic depending on the changes in the body of sandfish (Arctoscopus japonicus)
YOON, Eun-A; LEE, Kyounghoon; HWANG, Kangseok; LEE, Hyungbeen; HAN, Inwoo; HWANG, Doo-Jin;
  PDF(new window)
Changes in target strength (TS) values of sandfish when sandfish was alive and dead were investigated using ex-situ at 120 kHz. TS values measured by tilt angles with -50~+50 degrees showed ranges from -71.0 to -53.3 dB for live sandfish, -63.1~-46.3 dB for thawed sandfish, and -70.0~-50.4 dB after 24 hours from thawed, respectively. It was shown that while TS values were similar between the case of live and the case of after 24 hours from thawed, mean TS values were higher by approximately 5 dB in the case of immediate thawed sandfish. It was also seen that TS values were similar between the case of thawed sandfish and the case of after 21 hours from live. The results showed that TS values of live sandfish were different from those of frozen sandfish. It implies that when estimating TS of frozen fish, the influx of bubbles and changes of body should be considered.
Sandfish;Swimbladderless;Target strength;Dead fish;Live fish;
 Cited by
Behavior analysis of rockfish (Sebastes inermis) depending on the temperature and LED lights, Journal of the Korean Society of Fisheries Technology, 2016, 52, 3, 191  crossref(new windwow)
An HC, Lee KH, Lee SI, Park HH, Bae BS, Yang JH and Kim JB. 2011. Behaviour habitats of sailfin sandfish, Arctoscopus japonicus approaching toward the eastern coastal waters of Korea in the spawning season. J Fish Mar Sci Edu 23, 35-42.

Foote KG. 1980. Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. J Acoust Soc Am 67, 2084-2089. (DOI:10.1121/1.384452) crossref(new window)

Henderson MJ and Horne JK. 2007. Comparison of in situ, ex situ, and backscatter model estimates of Pacific hake (Merluccius productus) target strength. Can J Fish Aquat Sci 64, 1781-1794. (DOI:10.1139/f07-134) crossref(new window)

Hirose M, Mukai T, Hwang DJ and Iida K. 2005. Target strength measurements on tethered live jellyfish Nemopilema nomurai. Nippon Suisan Gakkaishi 71, 571-577. (DOI:10.2331/suisan.71.571) crossref(new window)

Jorgensen R. 2003. The effects of swimbladder size, condition and gonads on the acoustic target strength of mature capelin. ICES J Mar Sci 60, 1056-1062. (DOI:10.1016/s1054-3139(03)00115-2) crossref(new window)

Kang D, Sadayasu K, Mukai T, Iida K, Hwang D, Sawada K and Miyashita K. 2004. Target strength estimation of black porgy Acanthopagrus schlegeli using acoustic measurements and a scattering model. Fish Sci 70, 819-828. (DOI:10.1111/j.1444-2906.2004.00875.x) crossref(new window)

Kang D, Cho S, Lee C, Myoung JG and Na J. 2009. Ex situ target-strength measurements of Japanese anchovy (Engra ulis japonicus) in the coastal Northwest Pacific. ICES J Mar Sci 66, 1219-1224. (DOI:10.1093/icesjms/fsp042) crossref(new window)

Lee DJ. 2015. Changes in the orientation and frequency dependence of target strength due to morphological differences in the fish swim bladder. Korean J Fish Aquat Sci 48, 233-243. (DOI:10.5657/kfas.2015.0233) crossref(new window)

Lee HW, Kim JH and Kang YJ. 2006. Sexual maturation and spawning in the sandfish Arctoscopus japonicus in the East Sea of Korea. J Kor Fish Soc 39, 349-356. (DOI:10.5657/kfas.2006.39.4.349)

Lee SI, Yang JH, Yoon SC, Chun YY, Kim JB, Cha HK and Choi YM. 2009. Biomass estimation of sailfin sandfish, Arctoscopus japonicus, in Korean waters. Korean J Fish Aquat Sci 42, 487-493. (DOI:10.5657/kfas.2009.42.5.487) crossref(new window)

Lu HJ, Kang M, Huang HH, Lai CC and Wu LJ. 2011. Ex situ and in situ measurements of juvenile yellowfin tuna Thunnus albacares target strength. Fish Sci 77, 903-913. (DOI:10.1007/s12562-011-0401-4) crossref(new window)

McClatchie S, Macaulay G, Coombs RF, Grimes P and Hart A. 1999. Target strength of the deep-water fish, orange roughy (Hoplostethus atlanticus) I. Experiments. J Acoust Soc Am 106, 131-142. (DOI:10.1121/1.427042) crossref(new window)

Saito I. 2004. Development of fishery resources assessment technology using a scientific echosounder. 2002Annual report of Fisheries Promotion Center, Akita Prefecture Public Relations Division, 4-1-1 sanno, Akita City, Akita 010-8570, Japan, 95-101.

Yang JH, Lee SI, Cha HK, Yoon SC, Chang DS and Chun YY. 2008. Age and growth of the sandfish, Arctoscopus japonicus in the East Sea of Korea. J Kor Soc Fish Tech 44, 312-322. (DOI:10.3796/ksft.2008.44.4.312) crossref(new window)

Yang JH, Lee SI, Park KY, Yoon SC, Kim JB, Chun YY, Kim SW and Lee JB. 2012. Migration and distribution changes of the Sandfish, Arctoscopus japonicus in the East Sea. J Kor Soc Fish Tech 48, 401-414. (DOI:10.3796/ksft.2012.48.4.401) crossref(new window)

Yasuma H, Takao Y, Sawada K, Miyashita K and Aoki I. 2006. Target strength of the lanternfish, Stenobrachius leucopsarus (family Myctophidae), a fish without an airbladder, measured in the Bering Sea. ICES J Mar Sci 63, 683-692. (DOI:10.1016/j.icesjms.2005.02.016) crossref(new window)

Yasuma H, Sawada K, Miyashita K and Aoki I. 2008. Swimbladder morphology and target strength of myctophid fish of the Northwestern Pacific. J Marine Acoust Soc Jap 35, 17-28. (DOI:/10.3135/jmasj.35.17) crossref(new window)