JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FISH Karyotype Analysis of Four Wild Cucurbitaceae Species Using 5S and 45S rDNA Probes and the Emergence of New Polyploids in Trichosanthes kirilowii Maxim
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FISH Karyotype Analysis of Four Wild Cucurbitaceae Species Using 5S and 45S rDNA Probes and the Emergence of New Polyploids in Trichosanthes kirilowii Maxim
Waminal, Nomar Espinosa; Kim, Hyun Hee;
  PDF(new window)
 Abstract
Wild relative species of domesticated crops are useful genetic resources for improving agronomic traits. Cytogenetic investigations based on chromosome composition provide insight into basic genetic and genomic characteristics of a species that can be exploited in a breeding program. Here, we used FISH analysis to characterize the ploidy level, chromosome constitution, and genomic distribution o f 5S and 4 5S r ibosomal DNA (rDNA) in four wild Cucurbitaceae species, namely, Citrullus lanatus (Thunb.) Mansf. var. citroides L. H. Bailey (2n = 22), Melothria japonica Maxim. (2n = 22), Sicyos angulatus L. (2n = 24), and Trichosanthes kirilowii Maxim. (2n = 66, 88, 110 cytotypes), collected in different areas of Korea. All species were diploids, except for T. kirilowii, which included hexa-, octa-, and decaploid cytotypes (2n = 6x = 66, 8x = 88, and 10x = 110). All species have small metaphase chromosomes in the range of . The 45S rDNA signals were localized distally compared to the 5S rDNA. C. lanatus var. citroides and M. japonica showed one and two loci of 45S and 5S rDNA, respectively, with co-localization of rDNA signals in one M. japonica chromosome. S. angulatus showed two co-localized signals of 5S and 45S rDNA loci. The hexaploid T. kirilowii cytotype showed five signals each for 45S and 5S rDNA, with three being co-localized. This is the first report of hexaploid and decaploid cytotypes in T. kirilowii. These results will be useful in future Cucurbitaceae breeding programs.
 Keywords
Citrullus lanatus var. citroides;FISH karyotype;Melothria japonica;rDNA probe;Sicyos angulatus;Trichosanthes kirilowii;
 Language
English
 Cited by
 References
1.
Albert, P. S., Z. Gao, T. V. Danilova, and J. A. Birchler. 2010. Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet. Genome. Res. 129:6-16. crossref(new window)

2.
Anamthawat-Jonsson, K. 2001. Molecular cytogenetics of introgressive hybridization in plants. Methods Cell Sci. 23:141-150. crossref(new window)

3.
Antao, C. M. and F. X. Malcata. 2005. Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol. Biochem. 43:637-650. crossref(new window)

4.
Balao, F., J. Herrera, and S. Talavera. 2011. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol. 192: 256-265. crossref(new window)

5.
Benavente, E., M. Cifuentes, J. C. Dusautoir, and J. David. 2008. The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet. Genome Res. 120:384-395. crossref(new window)

6.
Bennetzen, J. L. 2005. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 15:621-627. crossref(new window)

7.
Bennetzen, J. L., J. Ma, and K. M. Devos. 2005. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95:127-132. crossref(new window)

8.
Bertioli, D.J., M.C. Moretzsohn, L.H. Madsen, N. Sandal, S.C. Leal-bertioli, P.M. Guimaraes, B.K. Hougaard, J. Fredslund, L. Schauser, A.M. Nielsen, S. Sato, S. Tabata, S.B. Cannon, and J. Stougaard. 2009. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45. crossref(new window)

9.
Brar, D. S. and G. S. Khush. 1997. Alien introgression in rice. Plant Mol. Biol. 35:35-47. crossref(new window)

10.
Bruggmann, R., A. K. Bharti, H. Gundlach, J. Lai, S. Young, A. C. Pontaroli, F. Wei, G. Haberer, G. Fuks, C. Du, C. Raymond, M. C. Estep, R. Liu, J. L. Bennetzen, A. P. Chan, P. D. Rabinowicz, J. Quackenbush, W. B. Barbazuk, R. A. Wing, B. Birren, C. Nusbaum, S. Rounsley, K. F. Mayer, and J. Messing. 2006. Uneven chromosome contraction and expansion in the maize genome. Genome Res. 16:1241-1251. crossref(new window)

11.
Chen, Z. J. and H. H. Yu. 2013. Genetic and epigenetic mechanisms for polyploidy and hybridity, p. 335-354. In: Z. J. Chen and J.A. Birchler. Polyploid and hybrid genomics. John Wiley & Sons, Inc., Ames, Iowa, USA.

12.
Clarkson, J. J., K. Y. Lim, A. Kovarik, M. W. Chase, S. Knapp, and A. R. Leitch. 2005. Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol. 168:241-252. crossref(new window)

13.
Comai, L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6:836-846.

14.
Delannay, I. Y., J. E. Staub, and J. F. Chen. 2010. Backcross Introgression of the Cucumis hystrix genome increases genetic diversity in US Processing cucumber. J. Am. Soc. Hortic. Sci. 135:351-361.

15.
Garcia-Mas, J., A. Benjak, W. Sanseverino, M. Bourgeois, G. Mir, V. M. Gonzalez, E. Henaff, F. Camara, L. Cozzuto, E. Lowy, T. Alioto, S. Capella-Gutierrez, J. Blanca, J. Canizares, P. Ziarsolo, D. Gonzalez-Ibeas, L. Rodriguez-Moreno, M. Droege, L. Du, M. Alvarez-Tejado, B. Lorente-Galdos, M. Mele, L. Yang, Y. Weng, A. Navarro, T. Marques-Bonet, M. A. Aranda, F. Nuez, B. Pico, T. Gabaldon, G. Roma, R. Guigo, J. M. Casacuberta, P. Arus, and P. Puigdomenech. 2012. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109:11872-11877. crossref(new window)

16.
Gerlach, W. and J. Bedbrook. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7:1869-1885. crossref(new window)

17.
Guerra, M. 2008. Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet. Genome Res. 120:339-350. crossref(new window)

18.
Guo, S., J. Zhang, H. Sun, J. Salse, W. J. Lucas, H. Zhang, Y. Zheng, L. Mao, Y. Ren, Z. Wang, J. Min, X. Guo, F. Murat, B. K. Ham, Z. Zhang, S. Gao, M. Huang, Y. Xu, S. Zhong, A. Bombarely, L. A. Mueller, H. Zhao, H. He, Y. Zhang, Z. Zhang, S. Huang, T. Tan, E. Pang, K. Lin, Q. Hu, H. Kuang, P. Ni, B. Wang, J. Liu, Q. Kou, W. Hou, X. Zou, J. Jiang, G. Gong, K. Klee, H. Schoof, Y. Huang, X. Hu, S. Dong, D. Liang, J. Wang, K. Wu, Y. Xia, X. Zhao, Z. Zheng, M. Xing, X. Liang, B. Huang, T. Lv, J. Wang, Y. Yin, H. Yi, R. Li, M. Wu, A. Levi, X. Zhang, J. J. Giovannoni, J. Wang, Y. Li, Z. Fei, and Y. Xu. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45:51-58. crossref(new window)

19.
Huang, S., R. Li, Z. Zhang, L. Li, X. Gu, W. Fan, W. J. Lucas, X. Wang, B. Xie, P. Ni, Y. Ren, H. Zhu, J. Li, K. Lin, W. Jin, Z. Fei, G. Li, J. Staub, A. Kilian, E. A. van der Vossen, Y. Wu, J. Guo, J. He, Z. Jia, G. Tian, Y. Lu, J. Ruan, W. Qian, M. Wang, Q. Huang, B. Li, Z. Xuan, J. Cao, Asan, Z. Wu, J. Zhang, Q. Cai, Y. Bai, B. Zhao, Y. Han, Y. Li, X. Li, S. Wang, Q. Shi, S. Liu, W. K. Cho, J. Y. Kim, Y. Xu, K. Heller-Uszynska, H. Miao, Z. Cheng, S. Zhang, J. Wu, Y. Yang, H. Kang, M. Li, H. Liang, X. Ren, Z. Shi, M. Wen, M. Jian, H. Yang, G. Zhang, Z. Yang, R. Chen, L. Ma, H. Liu, Y. Zhou, J. Zhao, X. Fang, L. Fang, D. Liu, H. Zheng, Y. Zhang, N. Qin, Z. Li, G. Yang, S. Yang, L. Bolund, K. Kristiansen, S. Li, X. Zhang, J. Wang, R. Sun, B. Zhang, S. Jiang, and Y. Du. 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41:1275-1281. crossref(new window)

20.
Humphreys, M., H.-M. Thomas, J. Harper, G. Morgan, A. James, A. Ghamari-Zare, and H. Thomas. 1997. Dissecting drought-and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol. 137:55-60. crossref(new window)

21.
Icso, D., M. Molnar-Lang, and G. Linc. 2014. Constructing an alternative wheat karyotype using barley genomic DNA. J. Appl. Genet. 56:45-48.

22.
Jeffrey, C. S. 2005. A new system of Cucurbitaceae. Bot. Zhurn. 90:332-335.

23.
Jiang, J., B. Friebe, and B. Gill. 1993. Recent advances in alien gene transfer in wheat. Euphytica 73:199-212.

24.
Karmakar, K., R. K. Sinha, and S. Sinha. 2013. Karyological and electrophoretic distinction between sexes of Trichosanthes bracteata. Am. J. Plant Sci. 4:494. crossref(new window)

25.
Kellogg, E.A. 2013. Grasses, Synteny, Evolution, and Molecular Systematics. In: S.M. HUGHES (ed.). Brenner's Encyclopedia of Genetics (Second Edition). San Diego: Academic Press.

26.
Kocyan, A., L. B. Zhang, H. Schaefer, and S. S. Renner. 2007. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol. Phylogenet. Evol. 44:553-577. crossref(new window)

27.
Koo, D. H., Y. W. Nam, D. Choi, J. W. Bang, H. de Jong, and Y. Hur. 2010. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 18:325-336. crossref(new window)

28.
Kovarik, A., S. Renny-Byfield, M.-A. Grandbastien, and A. Leitch 2012. Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L., p. 209-224. In: P. S. Soltis and D. E. Soltis. Polyploidy and genome evolution., Springer, Berlin Heidelberg, Germany.

29.
Lashermes, P., S. Andrzejewski, B. Bertrand, M. C. Combes, S. Dussert, G. Graziosi, P. Trouslot, and F. Anthony. 2000. Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theor. Appl. Genet. 100:139-146. crossref(new window)

30.
Lee-Huang, S., P. L. Huang, H. F. Kung, B. Q. Li, P. L. Huang, P. Huang, H. I. Huang, and H. C. Chen. 1991. TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA 88:6570-6574. crossref(new window)

31.
Lee, J.-M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. Hortscience. 29:235-239.

32.
Liao, P.-C., C.-C. Tsai, C.-H. Chou, and Y.-C. Chiang. 2012. Introgression between cultivars and wild populations of Momordica charantia L. (Cucurbitaceae) in Taiwan. Int. J. Mol. Sci. 13: 6469-6491. crossref(new window)

33.
Macas, J., P. Neumann and A. Navratilova. 2007. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427. crossref(new window)

34.
Mandakova, T., M. E. Schranz, T. F. Sharbel, H. de Jong, and M. A. Lysak. 2015. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant J. 82:785-793. crossref(new window)

35.
Mayer, K. F. X., M. Martis, P. E. Hedley, H. Simkova, H. Liu, J. A. Morris, B. Steuernagel, S. Taudien, S. Roessner, H. Gundlach, M. Kubalakova, P. Suchankova, F. Murat, M. Felder, T. Nussbaumer, A. Graner, J. Salse, T. Endo, H. Sakai, T. Tanaka, T. Itoh, K. Sato, M. Platzer, T. Matsumoto, U. Scholz, J. Dolezel, R. Waugh, and N. Stein. 2011. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249-1263. crossref(new window)

36.
Mayer, R. A., P. A. Sergios, K. Coonan, and L. O'Brien. 1992. Trichosanthin treatment of HIV-induced immune dysregulation. Eur. J. Clin. Invest. 22:113-122. crossref(new window)

37.
McGrath, C. L. and M. Lynch. 2012. Evolutionary significance of whole-genome duplication, p.1-20. In: P. S. Soltis and D. E. Soltis (eds.). Polyploidy and genome evolution. Springer, Berlin Heidelberg, Germany.

38.
McGrath, M. S., K. M. Hwang, S. E. Caldwell, I. Gaston, K. C. Luk, P. Wu, V. L. Ng, S. Crowe, J. Daniels, J. Marsh, and et al. 1989. GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA 86:2844-2848. crossref(new window)

39.
Minh, C. V., N. X. Nhiem, H. T. Yen, P. V. Kiem, B. H. Tai, H. Le Tuan Anh, T. T. T. Hien, S. Park, N. Kim, and S. H. Kim. 2015. Chemical constituents of Trichosanthes kirilowii and their cytotoxic activities. Arch. Pharm. Res. 1-6.

40.
Mun, J. H., S. J. Kwon, T. J. Yang, Y. J. Seol, M. Jin, J. A. Kim, M. H. Lim, J. S. Kim, S. Baek, B. S. Choi, H. J. Yu, D. S. Kim, N. Kim, K. B. Lim, S. I. Lee, J. H. Hahn, Y. P. Lim, I. Bancroft, and B. S. Park. 2009. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol. 10:R111. crossref(new window)

41.
Ni, L., X. Zhu, C. Gong, Y. Luo, L. Wang, W. Zhou, S. Zhu, and Y. Li. 2015. Trichosanthes kirilowii fruits inhibit non-small cell lung cancer cell growth through mitotic cell-cycle arrest. Am. J. Chin. Med. 43:349-364. crossref(new window)

42.
Otto, S. P. 2007. The evolutionary consequences of polyploidy. Cell 131:452-462. crossref(new window)

43.
Qian, C.-L., X.-H. Qi, J.-H. Yang, and M.-F. Zhang. 2012. Molecular phylogeny of Chinese snakegourd (Trichosanthes kirilowii Maxim.) based on cytological and AFLP analyses. Caryologia 65:216-222. crossref(new window)

44.
Ramsey, J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. 108:7096-7101. crossref(new window)

45.
Robinson, R. W. and D. S. Decker-Walters 1997. Cucurbits. Wallingford, UK, CABI Publishing.

46.
Sain, R. S., P. Joshi and E. V. Divakara Sastry. 2002. Cytogenetic analysis of interspecific hybrids in genus Citrullus (Cucurbitaceae). Euphytica 128:205-210. crossref(new window)

47.
Seo, C.-S. S., T.-W. Kim, Y.-J. Kim, S.-R. Park, H. Ha, H.-K. Shin, and J.-Y. Jung. 2015. Trichosanthes kirilowii ameliorates cisplatin-induced nephrotoxicity in both in vitro and in vivo. Nat. Prod. res. 29:554-557. crossref(new window)

48.
Shengping, Z., G. Xingfang, and W. Ye. 2006. Effect of bur cucumber (Sicyos angulatus L.) as rootstock on growth physiology and stress resistance of cucumber plants. Acta Hortic. Sin. 33:1231-1236.

49.
Singh, A. K. 1979. Cucurbitaceae and polyploidy. Cytologia 44: 897-905. crossref(new window)

50.
Snowdon, R. J., W. Kohler, W. Friedt, and A. Kohler. 1997. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor. Appl. Genet. 95:1320-1324. crossref(new window)

51.
Soltis, D. E., R. J. A. Buggs, W. B. Barbazuk, S. Chamala, M. Chester, J. P. Gallagher, P. S. Schnable, and P. S. Soltis 2012. The early stages of polyploidy: Rapid and repeated evolution in Tragopogon, p.271-292. In: Polyploidy and genome evolution. P. S. Soltis and D. E. Soltis, Springer, Berlin, Heidelberg, Germany.

52.
Szinay, D., Y. Bai, R. Visser, and H. de Jong. 2010. FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet. Genome Res. 129:199-210. crossref(new window)

53.
Thies, J. A. and A. Levi. 2007. Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. Hortscience. 42:1530-1533.

54.
Tzonev, R. 2005. Sicyos angulatus (Cucurbitaceae): a new adventive species for the flora of Bulgaria. Phytologia Balcanica 11:67-68.

55.
Uchikoba, T., S. Hosoyamada, M. Onjyo, K. Arima, H. Yonezawa, and M. Kaneda. 2001. A serine endopeptidase from the fruits of Melothria japonica (Thunb.) Maxim. Phytochemistry 57:1-5. crossref(new window)

56.
Vrana, J., H. Simkova, M. Kubalakova, J. Cihalikova and J. Dolezel. 2012. Flow cytometric chromosome sorting in plants: The next generation. Methods 57:331-337. crossref(new window)

57.
Waminal, N., H. M. Park, K. B. Ryu, J. H. Kim, T. J. Yang, and H. H. Kim. 2012. Karyotype analysis of Panax ginseng C.A. Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution. Comp. Cytogenet. 6:425-441. crossref(new window)

58.
Waminal, N. E. and H. H. Kim. 2012. Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Hortic. Environ. Biotechnol. 53:49-56. crossref(new window)

59.
Waminal, N. E., N. S. Kim, and H. H. Kim. 2011. Dual-color FISH karyotype analyses using rDNAs in three Cucurbitaceae species. Genes Genom. 33:521-528. crossref(new window)

60.
Waminal, N. E., K. B. Ryu, B. R. Park, and H. H. Kim. 2014. Phylogeny of Cucurbitaceae species in Korea based on 5S rDNA non-transcribed spacer. Genes Genom. 36:57-64. crossref(new window)

61.
Wang, Q., H. Liu, A. Gao, X. Yang, W. Liu, X. Li, and L. Li. 2012. Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) affected by environmental factors. PloS one 7.

62.
Weeden, N. F. and R. W. Robinson. 1986. Allozyme segregation ratios in the interspecific cross Cucurbita maxima x C. ecuadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure. Genetics 114:593-609.

63.
Wendel, J. F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42:225-249. crossref(new window)

64.
Weng, Y. and Z. Sun 2012. Major cucurbit crops, p. 1-16. In: Y.-H. Wang, T. K. Behera, and C. Kole. Genetics, genomics and breeding of cucurbits. Science Publishers, New Hampshire, USA.

65.
Xiong, Z. Y. and J. C. Pires. 2011. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genet. 187:37-49. crossref(new window)

66.
Zamir, D. 2001. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2:983-989.

67.
Zhuang, F. Y., J. F. Chen, J. E. Staub, and C. T. Qian. 2006. Taxonomic relationships of a rare Cucumis species (C. hystrix Chakr.) and its interspecific hybrid with cucumber. Hortscience 41:571-574.