JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The kinematic analysis of the ankle joint and EMG analysis of the lower limbs muscle for the different walking speed
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The kinematic analysis of the ankle joint and EMG analysis of the lower limbs muscle for the different walking speed
Moon, Gon-Sung;
  PDF(new window)
 Abstract
The purpose of this study was to analyze the kinematic variables of ankle joints and EMG signal of the lower limbs muscle activity for the different walking speed. The subjects were 6 males of twenties. It was classified into three different walking speed-0.75m/s, 1.25m/s, 1.75m/s. The walking performances were filmed by high speed video camera and EMG signal was gained by ME3000P8 Measurement Unit. Tibialis anterior(TA), Gastrocnemius medial head(GM), Gastrocnemius lateral head(GL), Ssoleus(SO) were selected for the dorsiflexion and plantarflexion of the ankle joint. The result of this study were as follows: 1. In the gait cycle, The time parameters for the phases were showed significant difference without the terminal stance phase and terminal swing phase for the different walking speed. 2. The angle of ankle joint was no significant difference for each time point and MDF, MPF but increasing walking speed the angle had the increasing pattern slightly. 3. The angular velocity of ankle joint was showed the significant difference for LHC, RTO, RKC, LHU, MPF and MDF point along the walking speed. 4. TA was showed about 2-3 times muscle activity at the 1.75m/s than 1.25m/s in some phases. And it was showed the similar muscle activity between the 0.75m/s and 1.25m/s but, showed a little much muscle activity in the 0.75m/s. GM was showed about 2-3 times muscle activity in the 1.75m/s than 1.25m/s, and even much muscle activity at the 0.75m/s than 1.25m/s in some phases. GL was showed increasing pattern of muscle activity specially in the initial swing phase as the walking speed increased. SO was showed about 3 times muscle activity in the 1.75m/s than 1.25m/s during the plantarflexion of ankle joint. It was showed the similar muscle activity between the 0.75m/s and 1.25m/s but, showed a little much muscle activity in the 1.25m/s.
 Keywords
GAIT;KINEMATIC;MUSCLE ACTIVITY;IEMG;
 Language
Korean
 Cited by
1.
파워워킹과 일반보행의 운동학적 및 EMG 비교분석,조규권;김유신;김은정;

한국운동역학회지, 2006. vol.16. 2, pp.85-95 crossref(new window)
2.
Orthotics 착용에 따른 정상, 요족, 평발의 생체역학적 보행분석 및 시뮬레이션,이중현;이재옥;박성하;이영신;

대한기계학회논문집A, 2007. vol.31. 11, pp.1115-1123 crossref(new window)
3.
자진모리장단에 따른 한국무용3단 디딤새 동작에 관한 운동학적 분석,안완식;

한국운동역학회지, 2008. vol.18. 1, pp.203-212 crossref(new window)
4.
보행스피드에 대한 상체 공헌도의 연령에 따른 변화,배영상;

한국운동역학회지, 2007. vol.17. 4, pp.27-36 crossref(new window)
5.
노르딕 워킹과 일반 보행의 효율성 비교 분석,김로빈;조준행;

한국운동역학회지, 2010. vol.20. 4, pp.365-372 crossref(new window)
6.
보행동작에 대한 바이오메카닉스적 분석과 비디오의 정성적 분석의 상호관련성,배영상;우오구;이정민;

한국운동역학회지, 2010. vol.20. 4, pp.421-427 crossref(new window)
7.
Medical Exercise Therapy가 만성 뇌졸중 환자의 보행능력 및 족관절 근활성도에 미치는 영향,조영환;박종항;김경윤;남기원;

대한물리의학회지, 2011. vol.6. 3, pp.311-321
8.
육상 단거리 선수와 장거리 선수의 체간과 하지의 근기능 및 근전도 비교 분석,정재후;김정태;

한국운동역학회지, 2012. vol.22. 1, pp.9-16 crossref(new window)
9.
전투용 배낭 착용 보행 시 인체에 미치는 영향 비교분석,김의환;김성섭;권문석;백승철;위웅량;김지태;김태완;

한국체육학회지자연과학편, 2011. vol.50. 6, pp.409-418
10.
인코더, 가속도, 근전도 센서 기반의 보행불균형 판단 시스템 연구,박용덕;김상균;권장우;이상민;

재활복지공학회논문지, 2016. vol.10. 2, pp.155-162 crossref(new window)
11.
Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number,;;;;;

한국운동역학회지, 2016. vol.26. 2, pp.221-228 crossref(new window)
1.
A Study of Gait Imbalance Determination System based on Encoder, Accelerometer and EMG sensors, Journal of rehabilitation welfare engineering & assistive technology, 2016, 10, 2, 155  crossref(new windwow)
2.
Comparative Analysis of Nordic Walking and Normal Gait Based on Efficiency, Korean Journal of Sport Biomechanics, 2010, 20, 4, 365  crossref(new windwow)
3.
Kinematic Analysis of Samdan Didimsae Movement for Jajinmori Jangdan, Korean Journal of Sport Biomechanics, 2008, 18, 1, 203  crossref(new windwow)
4.
Relationship between the Biomechanical Analysis and the Qualitative Analysis of Video Software for the Walking Movement, Korean Journal of Sport Biomechanics, 2010, 20, 4, 421  crossref(new windwow)
5.
Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number, Korean Journal of Sport Biomechanics, 2016, 26, 2, 221  crossref(new windwow)
6.
The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait, Korean Journal of Sport Biomechanics, 2006, 16, 2, 85  crossref(new windwow)
7.
Comparative Analysis on Muscle Function and EMG of Trunk and Lower Extremity in Short and Long Distance Athlete, Korean Journal of Sport Biomechanics, 2012, 22, 1, 9  crossref(new windwow)
 References
1.
김로빈(2000). 보행시 속도와 보폭 변화에 따른 하지관절의 운동역학적 분석. 연세대학교 대학원 박사학위 논문.

2.
김택훈, 최홍식, 김창인, 이진복(2002). 정상 보행과 발가락 보행의 하지 근육 근활성도 비교, 한국 전문 물리치료 학회지, 9(2).

3.
박경희, 권오윤, 김영호(2003). 정상인에서 보행 속도가 발관절의 관절각과 발바닥최대 압력 분포에 미치는 영향, 한국 전문 물리치료 학회지, 10(1).

4.
윤남식, 이경옥, 김지연(1998). 경사도에 따른 보행의 운동학적 비교. 한국 여성체육학, 13(1), 89-101.

5.
임비오(1997). 성인남자의 연령별 보행 형태 분석. 서울 대학교 대학원 석사학위논문.

6.
정철수, 신인식, 서정석, 은선덕(2001). 연령과 속도에 따른 보행 형태와 역학적 효율성 분석. 한국운동역학회, 10(2), 205-219.

7.
한상덕(1983). 인간공학. 서울: 학문사.

8.
허영진(1997). 성장기 남자의 연령별 보행 형태 분석. 서울 대학교 대학원 석사학위 논문.

9.
Anderson, F.C., & Pandy, M.G. (2003). Individual muscle contributions to support in normal walking. Gait and Posture, 17, 159-169. crossref(new window)

10.
Andriacchi, T.P., Ogle, J.A., & Falant, J.O. (1977). Walking speed as a basis for normal and abnormal gait measurements. Journal of Biomechanics, 10, 261-268. crossref(new window)

11.
Burnfield, J.M., Few, C.D., Mohamed, O.S., & Perry, J. (2004). The influence of walking speed and footwear on plantar pressures in older adults. Clinical Biomechanics, 19, 1, 78-84. crossref(new window)

12.
Cram. J. R., Kasman, G. S., & Holtz, J. (1988). Introduction to Surface Electromyography. Gaithersburg. An Aspen Pub.

13.
David, G.L., & Thor, F.B. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36(6), 765-776. crossref(new window)

14.
Doorenbosch, C.A.M., & Ingen Schenau, G.J. (1995). The role of mono- and bi-articular muscles during contact control leg tasks in man. Human Movement Science, 14, 279-300. crossref(new window)

15.
Frigo, C., Crenna P., & Jensen, L. M. (1996). Moment-angle relationship at lower limb joints during human walking at different velocities. Journal of Electromyography and Kinesiology, 6(3), 177-1990. crossref(new window)

16.
Fujia, M., Matsusaka, N., Norimatsu, T., Chiba, G., Hayashi T., Miyasaki, M., Yamaguchi, K., Suzuki, R., & Itai, T. (1983). Motion and role of the MP joints in walking. Biomechanics, VIII-A, 467-470.

17.
Galley, P. M., & Foster, A. L. (1987). Human movement. Churchill Livingstone, 228-237.

18.
Hof, A. L., Elzinga, H., Grimmius, W. & Halbertsma, J. P. K. (2002). Speed dependence of averaged EMG profiles in walking. Gait and Posture, 16, 78-86. crossref(new window)

19.
Ingen Schenau GJv, Bobbert M.F., Rozendal R.H. (1987). The unique action of bi-articular muscles in complex movements. Journal of Anat., 1551-1555.

20.
Johnson, G.W. (1999). LabVIEW graphical programming: Practical applications in instrumentation and control. New York: McGraw-Hill.

21.
Josef, F. (2001). EMG-interference pattern analysis. Journal of Electromyography and Kinesiology, 11(4), 231-246. crossref(new window)

22.
Li, L., Elizabeth, C.H., van den Bogert, Caldwell, G.E., Richard, E.A., van Emmerik, & Hamill, J. (1999). Coordination patterns of walking and running at similar speed and stride frequency. Human Movement Science, 18, 67-85. crossref(new window)

23.
Michael, W.W. (1990). Gait Analysis: An Introduction. Oxford Orthopaedic Engineering Centre: University of Oxford.

24.
Nene, A., Mayagoitia, R., & Veltink, P. (1999). Assessment of rectus femoris function during initial swing phase. Gait and Posture, 9, 1-9. crossref(new window)

25.
Neptune, R.R., Kautz S.A., & Zajac, F.E. (2001). Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics, 34, 1387-98. crossref(new window)

26.
Nigg, De Boer, & Fisher. (1995). A kinematic comparison of overground and treadmill running, Medicine and Science in Sports and Exercise. 27(1), 98-105.

27.
Olney, S.J., & Richards, C. (1996). Hemiparetic gait following stroke. Part I: Characteristics. Gait and Posture, 4(2), 136-148. crossref(new window)

28.
Otter, A.R., Geurts, A.C.H., Mulder, T., & Duysens J. (2003). Speed related changes in muscle activity from normal to very slow walking speeds. Gait and Posture, 19(3), 270-278. crossref(new window)

29.
Perttunen, J., & Komi, P.V. (2001). Effects of walking speed on foot loading patterns. Journal of Hunan Movement Stud., 40, 291-304.

30.
Perry, J. (1992). Gait Analysis: Normal and Pathological Function. NJ:SLACK.

31.
Scott, S.H. & Winter, D.A. (1990). Internal forces at chronic running injury sites. Medicine and Science in Sports and Exercise, 22(3), 357-369.

32.
Sutherland, D. H., Olshen, R. A., Biden, E. N., & Wyatt, M. P. (1988). The development of mature walking. Oxford: Mac Keith Press.

33.
Winter, D.A. (1983). Biomechaical motor patterns in normal gait. Journal of Motor Behavior, 15, 302-330. crossref(new window)

34.
Whittle, M. W. (1990). Gait Analysis: Introduction. Oxford Orthopaedic Engineering Centre: University of Oxford.

35.
Zajac, F.E. Neptune R.R., & Kautz S.A. (2002). Biomechanics and muscle coordination of human walking: Introduction to concepts, power transfer, dynamics and simulations. Gait and Posture, 16, 215-232. crossref(new window)

36.
Zatsiorky, V.M., Werner, S.L., & Kaimin, M.A. (1994). basic kinematics of walking, The Journal of Sports Medicine and Physical Fitness, 34, 109-134.