Advanced SearchSearch Tips
A Study of Electrode Locations for Design of ECG Monitoring Smart Clothing based on Body Mapping
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Fashion & Textile Research Journal
  • Volume 17, Issue 6,  2015, pp.1039-1049
  • Publisher : The Society of Fashion and Textile Industry
  • DOI : 10.5805/SFTI.2015.17.6.1039
 Title & Authors
A Study of Electrode Locations for Design of ECG Monitoring Smart Clothing based on Body Mapping
Cho, Hakyung; Cho, Sang woo;
  PDF(new window)
The increase in the need for a 24 hour monitoring of biological signals has been accompanied by an increasing interest in wearable systems that can register ECG at any time and place. ECG-monitoring clothing is a wearable system that records heart function continuously, but there have been difficulties in making accurate measurements due to motion artifacts. Although various factors may cause noise in measurements due to motion, the variations in the body surface and clothing during movements that cause eventual the shifting and displacement of the electrodes is particularly noteworthy. Therefore, this study used biomedical body mapping and a motion-capture system to measure and analyze the changes in the body surface and garment during movements. It was deduced that the area where the friction and separation between the garment and skin is the lowest would be the appropriate location to place the ECG electrodes. For this study, 5 male and 5 female in their 20s were selected as subjects, and through their selected body movements, the changes in the garment and skin were analyzed using the motion-capture system. As a result, the area below the chest circumference and the area below the shoulder blades were proposed as the optimal location of electrode for ECG monitoring.
body mapping;3D motion capture;skin change rate;clothing change rate;optimal location of electrode;
 Cited by
Cho, H. K., & Cho, S. W. (2015a). A study of sensing location for ECG monitoring based on the skin change rate. Fashion & Textile Research Journal, 17(5), 844-893. doi:10.5805/SFTI.2015.17.5.844 crossref(new window)

Cho, H. K., & Lee, J. H. (2015b). A study on the optimal positions of ECG electrodes in a garment for the design of ECG-monitoring clothing for male. Journal of Medical Systems, 39(9), 1-14. doi:10.1007/s10916-015-0279-2 crossref(new window)

Cho, H. K., Song, H. Y., Cho, H. S., Goo, S. M., & Lee, J. H. (2010). A study on the design of functional clothing for vital sign monitoring - Based on ECG sensing clothing. Korean Journal of the Science of Emotion and Sensibility, 13(3), 467-474.

Cömert, A., Honkala, M., & Hyttinen, J. (2013). Effect of pressure and padding on motion artifact of textile electrodes. Biomedical Engineering Online, 12(1), 26. doi:10.1186/1475-925X-12-26 crossref(new window)

Finlay, D. D., Nugent, C. D., Donnelly, M. P., McCullagh, P. J., & Black, N. D. (2008). Optimal electrocardiographic lead systems: practical scenarios in smart clothing and wearable health systems. Information Technology in Biomedicine, IEEE Transactions on, 12(4), 433-441. doi:10.1109/TITB.2007.896882. crossref(new window)

Fletcher, G. F., Balady, G. J., Amsterdam, E. A., Chaitman, B., Eckel, R., Fleg, J., Froelicher, V. F., Leon, A. S., Pina, I. L., & Bazzarre, T. (2001). Exercise standards for testing and training a statement for healthcare professionals, the American heart association. Circulation, 104(14), 1694-1740. doi:10.1161/hc3901.095960 crossref(new window)

Jang, S. E. (2006). Effect of fabric elasticity and body movement on performance of electrocardiogram signal monitoring clothing. Unpublished master’s thesis, Yonsei University, Seoul.

Jeong, Y. H., Kim, S. H., & Yang, Y. M. (2010). Development of tight-fitting garments with a portable ECG monitor to measure vital signs. Journal of the Korean Society of Clothing and Textiles, 34(1), 112-125. doi:10.5850/JKSCT.2010.34.1.112 crossref(new window)

Jeong, Y. H., & Yang, Y. M. (2012). Development of tight-fitting upper clothing for measuring ECG -A focus on weft reduction rate and subjective assessment-. Journal of the Korean Society of Clothing and Textiles, 36(11), 1174-1185. doi:10.5850/JKSCT.2012.36.11.1174 crossref(new window)

Kang, D., Cho, H. K., Song, H. Y., Cho, H. S., Lee, J. H., Lee, K. H., Koo, S. M., Lee, Y. J., & Lee, J. W. (2008). A study on a prototype of ECG-sensing clothing based on textile electrode for lifestyle monitoring. Korean Journal of the Science of Emotion and Sensibility, 11(3), 419-426.

Koo, H. R., Lee, Y. J., Gi, S., Khang, S., Lee, J. H., Lee, J. H., Lim, M. G., Park, H. J., & Lee, J. W. (2014). The effect of textile-based inductive coil sensor positions for heart rate monitoring. Journal of Medical Systems, 38(2), 1-12. doi:10.1007/s10916-013-0002-0 crossref(new window)

Koo, H. R., Lee, Y. J., Gi, S., Lee, S. P., Kim, K. N., Kang, S. J., Lee, J. W., & Lee, J. H. (2015). Effect of module design for a garment-type heart activity monitoring wearable system based on non-contact type sensing. Journal of the Korean Society of Clothing and Textiles, 39(3), 369-378. doi:10.5850/JKSCT.2015.39.3.369 crossref(new window)

Koo, S. M. (2008). A study on the design of re-modularized smart clothing for ECG-sensing. Unpublished master’s thesis, Yonsei University, Seoul.

Lee, Y. J. (2010). Development of textile electrode measuring system for biopotential signals. Unpublished master’s thesis, Kunkook University, Chungjoo.

Min, S. D., Yun, Y. H., Lee, H. S., Shin, H. S., Cho, H. K., Hwang, S. C., & Lee, M. H. (2010). Respiration measurement system using textile capacitive pressure sensor. The Transactions of the Korean Institute of Electrical Engineers P, 59(1), 58-63.

Mohindra, R., Sapp, J. L., Clements, J. C., & Horáček, B. N. (2007, September). Use of body-surface potential mapping and computer model simulations for optimal programming of cardiac resynchronization therapy devices. Proceeding of Conference of Computers in Cardiology (pp. 69-72). Durham, North Carolina, US: IEEE. doi:10.1109/CIC.2007.4745423 crossref(new window)

‘Motion capture system’. (2011, August 19). Dooree system. Retrieved from

Ornato, J. P., Menown, I. B., Riddell, J. W., Carley, S., Mackway-Jones, K., Higgins, G. L., Peberdy, M. A., Kontos, M. C., Maynard, S. J., & Jennifer Adgey, A. A. (2002). 80-Lead body map detects acute ST elevation myocardial infarction missed by standard 12-lead electrocardiography. Journal of the American College of Cardiology, 39(s2), 332. doi:10.1016/S0735-1097(02)81492-9 crossref(new window)

Self, W. H., Mattu, A., Martin, M., Holstege, C., Preuss, J., & Brady, W. J. (2006). Body surface mapping in the ED evaluation of the patient with chest pain: use of the 80-lead electrocardiogram system. The American Journal of Emergency Medicine, 24(1), 87-112. doi:10.1016/j.ajem.2005.04.008 crossref(new window)

Sobieszczanska, M., Jaqielski, J., Nowak, B., Pilecki, W., & Kalka, D. (2007). Appraisal of BSPM obtained from the limited lead system. The Anatolian Journal of Cardiology, 7, 11-13.

Song, H. Y., Lee, J. H., Kang, D., Cho, H., Cho, H. S., Lee, J. W., & Lee, Y. J. (2010). Textile electrodes of jacquard woven fabrics for biosignal measurement. The Journal of the Textile Institute, 101(8), 758-770. doi:10.1080/00405000903442086 crossref(new window)

Tysler, M., Kneppo, P., Turzová M., Svehlíová J., Karas, S., Filipová, E., Háa, K., & Filipová S. (2007). Noninvasive assessment of local myocardium repolarization changes using high resolution surface ECG mapping. Physiological Research, 56, 133-141.

Watkins, S. M. (1984). Clothing: The portable environment. Ames, IA: Iowa State University Press.

Yu, J. A., Sun, Y., & Kim, K. J. (2012). Preparation of conductive nanoweb through electrospinning followed by electroless silver-plating and its application as dry-type electrode for ECG measurement. Textile Science and Engineering, 49(1), 47-55. doi:10.12772/TSE.2012.49.1.047 crossref(new window)