Advanced SearchSearch Tips
Effect of Extractant on the Color Characteristics of Natural Colorant Extracts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Textile Coloration and Finishing
  • Volume 28, Issue 1,  2016, pp.1-13
  • Publisher : The Korean Society of Dyers and Finishers
  • DOI : 10.5764/TCF.2016.28.1.1
 Title & Authors
Effect of Extractant on the Color Characteristics of Natural Colorant Extracts
Lee, Young-Hee; Park, Young-Kwang; Baek, Young-Mee; Kim, Jung-Soo; Lee, Dong-Jin; Kim, Han-Do;
  PDF(new window)
Natural colorant extracts were obtained by extraction from tumeric root, gardenia seeds, mugwort and green tea using water, methanol, ethanol and acetone as extractants at room temperature for 3 hours under shaking condition(180rpm) with liquor ratio(solid:solvent; 1:100). The main pigment components of tumeric root, gardenia seeds, mugwort and green tea are known to be curcumin, crocin, chlorophyll b and epigallocatechin gallate, respectively. The effects of the kind of extractant and pH on the color characteristics of natural colorant extracts were investigated. The solubility parameters of pigment components were determined to find adequate extractant. The solubility parameters of curcumin, crocin, chlorophyll b and epigallocatechin gallate were found to be 27.85, 29.40, 19.48 and . As expected, solvents that have a solubility parameter similar to that of pigment component were generally found to be effective to obtain pigment extracts having high visible absorbance(A). The extract(pigment/solvent) with high visible absorbance was generally found to have low (lightness) and high Chroma(, purity).
natural colorant extract;extractant;color characteristics;solubility parameter;tumeric;gardenia;mugwort;green tea;
 Cited by
새로운 천연염료로서 수련 잎 추출색소의 염색성과 기능성(1): 면섬유 염색을 중심으로,여영미;유동일;신윤숙;

한국염색가공학회지, 2016. vol.28. 4, pp.290-298 crossref(new window)
Evaluation of Hygienic Properties and Effects of Printing on Curcuma- and Coffee-Dyed Cotton Fabrics, The Korean Journal of Community Living Science, 2017, 28, 1, 143  crossref(new windwow)
The Dyeing Properties and Functionality of Water Lily(Nymphaea tetragona) Leaves Extract as a New Natural Dye Resource(1): Dyeing of Cotton Fiber, Textile Coloration and Finishing, 2016, 28, 4, 290  crossref(new windwow)
S. Billmeyer, "Principles ofColor Technology, 2nd ed.", JohnWiley and Sons, Inc., USA, pp.1-23, 1981.

M. Choi, D. I. Yoo, and Y. S. Shin, Preparation of Lip Balm Utilizing Functionalities of Colorants Extracted from Marine Algae, Textile Coloration and Finishing, 26(2), 124(2014). crossref(new window)

Y. H. Lee, E. K. Hwang, Y. M. Baek, and H. D. Kim, Deodorizing Function andAntibacterialActivity of FabricsDyedwithGallnut( GallaChinensis) Extract, Textile Research J., 85, 1045(2015). crossref(new window)

K. R. Cho, "Natural Dyestuff and Dyeing", Hyungseul, Seoul, pp.65-114, 2004.

I. P. Kavirayyani, The Chemistry of Curcumin: From Extraction to TherapeuticAgent, Molecules, 19, 20091(2014). crossref(new window)

I. K. Hong, H. Hyen, and S. B. Lee, Extraction ofNatural Dye fromGardenia and ChromaticityAnalysisAccording to Chi Parameter, J. of Industrial and Engineering Chemistry, 24, 326(2015). crossref(new window)

C. Yang, C. Le, Z. Can, X. H. Chuan, C. C. Yong, L. Ying, J. Lin, Y. H. Xiang, C. Chu, and Z. Hao, Spectroscopic, Stability andRadical-Scavenging Properties of a Novel Pigment from Gardenia, Food Chemistry, 109, 269(2008). crossref(new window)

S. Benoit, Chlorophyll andCarotenoidAnalysis in Food Products, Properties of the Pigments and Methods of Analysis, Trend in Food Science and Technology, 13, 361(2002). crossref(new window)

B. H. KimandW. S. Song, TheDyeability andAntibacterial Activity of Artemisia Princeps Extracts, Textile Coloration and Finishing, 11(5), 30(1999).

A. Masek, E. Chrzescijanska, A. Kosmalska, and M. Zaborski, AntioxidantActivityDetermination in Sencha and Gun Powder Green Tea Extracts with the Application of Voltammentary andUV-VIS Spectrophotometry, C. R. Chimie, 15, 424(2012). crossref(new window)

S. Vladislav, N. Y. Michael, M. S. M. Ross, and P. R. David, The Spectral Properties of (-)Epigallocatechine3- O-Gallate(EGCG) Fluorescence in Different Solvents: Dependence on Solvent Polarity, PLOS ONE, 8(11), e79834(2013). crossref(new window)

S. H. Kim, Ultraviolet Protection Property ofGreen Tea ExtractDyed Fabrics, Textile Coloration and Finishing, 18(6), 80(2006).

J. H. Hildebrand andR. L. Scott, "The Solubility ofNonelectrolytes, 3rd ed.", Reinhold, New York, 1950.

J. H. Hildebrand and R. L. Scott, "Regular Solutions", Prentice-Hall, Englewood Cliffs, NJ, 1962.

A. F. M. Barton, "CRC Handbook of Solubility Parameters and Other Cohesion Parameters", CRC Press Inc., Boca Raton, Florida, p.8, 1983.

R. F. Fedors, The Method for Estimating Both the Solubility Parameters andMolarVolumes of Liquids, Polymer Engineering and Science, 14(2), 147(1974). crossref(new window)

J. Ramya, M. A. Priya, and P. Pankaj, Temperature-Dependent Spectroscopy Evidences of Curcumin inAqueousMedium: AMechanistic Study of Its Solubility and Stability, The J. of Physical Chemistry B., 116, 14533 (2012). crossref(new window)

C. M. Hansen, "Hansen Solubility Parameters: AUser's Handbook, 2nd ed.", CRCPress, BocaRaton, p.2, 2007.

L. Brigita, P. Mirko, and G. W. Alenka, Comparison of Prepared from Plant by-products Using Different Solvents and Extraction Time, J. of Engineering, 71, 214 (2005).

S. W. Chan, C. Y. Lee, C. F. Yap, W. M. W. Aida, and C. W. Ho, Optimisation of Extraction Conditions for Phenolic Compounds fromLimau Purut(Citrus hystrix) Peels, International Food Research J., 16, 203(2009).