JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Flame Extinction in Oxymethane Combustion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Flame Extinction in Oxymethane Combustion
Kim, Tae Hyung; Kwon, Oh Boong; Park, Jeong; Keel, Sang-In; Yun, Jin-Han; Park, Jong Ho;
  PDF(new window)
 Abstract
Oxy-methane nonpremixed flames diluted with were investigated to clarify impact of radiation heat loss and chemical effects of additional to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in , , and counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> ) in and counterflow flames. Chemical effects of additional to oxidizer stream on the flame extinction curves were appreciable in both and flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed flame.
 Keywords
Chemical effects;Radiation heat loss;Flame extinction;Radical index;
 Language
Korean
 Cited by
1.
충격파관 저압실/고압실 직경비에 따른 압력변동에 대한 수치해석,왕위엔강;김철진;손채훈;정인석;

한국연소학회지, 2016. vol.21. 4, pp.16-22 crossref(new window)
1.
A Numerical Study on Pressure Variation in a Shock Tube by Changing the Diameter Ratio of Low-Pressure (Driven) to High-Pressure (Driver) Part, Journal of the Korean Society of Combustion, 2016, 21, 4, 16  crossref(new windwow)
 References
1.
A. Molina, C. R. Shaddix. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst, 31 (2007), pp. 1905-1912. crossref(new window)

2.
C. R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst, 32 (2009), pp. 2091-2098. crossref(new window)

3.
J. Zhang, Takamasa, S. Ito, D. Riechelmann, T. Fujimori. Numerical investigation of oxy-coal combustion in a large-scale furnace: non-gray effect of gas and role of particle radiation. Fuel, 139 (2015) 87-93. crossref(new window)

4.
J. Rizza, R. Kharami, Y. A. Levendis, Alvarez, M. V. Gil, C. Pevida, F. Rubiera, J. J. Pis. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust Flame, 161 (2014), pp. 1096-1108. crossref(new window)

5.
Y. Tan, M.A. Douglas, E. Croiset, E. Thambimuthu. $CO_2 $ capture using oxygen enhanced combustion strategies for natural gas power plants. Fuel, 81 (2002), pp. 1007-1016. crossref(new window)

6.
J. Park, J.S. Park, H.P Kim, J.S. Kim, S.C. Kim, J.G. Choi, H.C. Cho, K.W. Cho, H.S. Park. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy & Fuels, 21 (2007), pp. 121-129. crossref(new window)

7.
F. Liu, H. Guo, G.J. Smallwood. The chemical effect of $CO_2 $ replacement of $N_2 $ in air on the burning velocity of $CH_2 $ and $H_2 $ premixed flames. Combust. Flame, 133 (2003), pp.495-497. crossref(new window)

8.
Z. Chen, X. Qin, B. Xu, Y. Ju, F. Liu. Studies of radiation absorption on flame speed and flammability limit of $CO_2 $ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-2700. crossref(new window)

9.
K. Maruta, K. Abe, S. Hasegawa, S. Maruyama, J. Sato. Extinction characteristics of $CH_4/CO_2 $ versus $O_4/CO_2 $ counterflow non-premixed flames at elevated pressures up to 0.7 MPa. Proc. Combust. Inst., 31 (2007), pp. 1223-1230. crossref(new window)

10.
P. Glaeborg, L.B. Bentze. Chemical Effects of a High $CO_2$ Concentration in Oxy-Fuel Combustion of Methane. Energy & Fuels, 22 (2008), pp. 291- 296. crossref(new window)

11.
M. Nishioka, C.K. Law, T. Takeno. A Flame-controlling continuation method for generating S-curve responses with detailed chemistry. Combust. Flame, 104 (1996), pp. 328-342. crossref(new window)

12.
R.J. Kee, A. Miller, G.H. Evans, G. Dixon_lewis. A computational model of the structure and extinction of starined, opposed flow, premixed methaneair flames. Prod. Combust. Inst., 22 (1988). Pp. 1479-1494.

13.
K. Maruta, M. Yoshida, H. Guo, Y. Ju, T. Niioka. Extinction of low-stretched diffusion flame in microgravity. Combust. Flame, 112 (1998), pp. 181- 187. crossref(new window)

14.
J.S. Park, D. J. Hwang, J. Park, J.S. Kim, S.C. Kim, S.I. Keel, K.T. Kim, and D.S. Noh. Edge flame instability in low strain rate counterflow diffusion flame. Combust. Flame, 146 (2006), pp. 612-619. crossref(new window)

15.
C. B. Oh, A. Hamins, M. Bundy, J. Park. The Twodimensional structure of low strain rate counterflow non-premixed methane flames in normal and microgravity. Combust. Flame Modelling, 12 (2008), pp. 283-302. crossref(new window)

16.
D.G. Park, J.H. Yun, J. Park, and S.I. Keel. A study on flame extinction characteristics along a C-curve. Energy & Fuels, 23 (2009), pp. 4236-4244. crossref(new window)

17.
Y.H. Chung, D.G. Park, J.H. Yun, J. Park, O.B. Kwon, S.I. Keel. Role of outer edge flame on flame extinction in nitrogen-diluted nonpremixed counterflow flames with finite burner diameters. Fuel, 205 (2013), pp.540-550.

18.
S.H. Won, S. Dooley, F.L. Dryer, Y. Ju. A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combust. Flame, 159 (2012), pp. 541-551. crossref(new window)

19.
R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon- Lewis. A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc Combust Inst, 22 (1988), pp.1479-1494.

20.
A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley. A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report. SAND 96-8243 (1997).

21.
Y. Ju, H. Guo, K. Maruta, F. Liu. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames, J Fluid Mech, 342 (1997), p.315. crossref(new window)

22.
R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report. SAND 89-8009B (1989).

23.
R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND86-8246 (1994).

24.
X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta. Study on stretch extinction limits of $CH_4/O_2 $ versus high temperature $O_2/CO_2$ counterflow non-premixed flames. Combust. Flame, 161 (2014), pp. 1526-1536. crossref(new window)

25.
S.W. Jung, J. Park, O.B. Kwon, Y.J. Kim, S.I. Keel, J.H. Yun, I.G. Lim. Effects of $CO_2$ addition on flame extinction in interacting $H_2$-air and CO-air premixed flames. Fuel, 136 (2014), pp. 69-78. crossref(new window)

26.
Z. Chen, X. Qin, Y. Ju, F. Liu. Studies of radiation absorption on flame spread and flammability of $CO_2$ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-700. crossref(new window)

27.
A. Linan. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astrronaut, 1 (1974), pp.1007-1039. crossref(new window)

28.
F. Liu, G.J. Samllwood, O.L. Gulder, Y. Ju. Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers. Combust. Flame, 121 (2000), pp.275-287. crossref(new window)

29.
http://navier.engr.colostate.edu/-dandy/co de/