Advanced SearchSearch Tips
Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films
Jang, Hee-Yeon; Park, Jong-Keuk; Lee, Wook-Seong; Baik, Young-Joon; Lim, Dae-Soon; Jeong, Jeung-Hyun;
  PDF(new window)
In this study we investigated the oxygen effect on the nucleation and its residual stress during unbalanced magnetron sputtering. Up to 0.5% in oxygen flow rate, cubic phase (c-BN) was dominated with extremely small fraction of Hexagonal phase (h-BN) of increasing trend with oxygen concentration, whereas hexagonal phase is dominated beyond 0.75% flow rate. Interestingly, the residual stress in cubic-phase-dominated films was substantially reduced with small amount of oxygen () down to a low value comparable to the h-BN case. This may be because oxygen atoms break B-N bonds and make B-O bonds more favorably, increasing bonds preference, as revealed by FTIR and NEXAFS. It was confirmed by experimental facts that the threshold bias voltage for nucleation and growth of cubic phase were increased from -55 V to -70 V and from -50 V to -60 V respectively. The reduction of residual stress in O-added c-BN films is seemingly resulting from the microstructure of the films. The oxygen tends to increase slightly the amount of h-BN phase in the grain boundary of c-BN and the soft h-BN phase of 3D network including surrounding nano grains of cubic phase may relax the residual stress of cubic phase.
Cubic boron nitride;Oxygen addition;Residual stress;Nucleation;
 Cited by
진공조의 잔류산소가 입방정질화붕소 박막 합성에 미치는 영향,오승근;김영만;

한국표면공학회지, 2013. vol.46. 4, pp.139-144 crossref(new window)
Effect of Residual Oxygen in a Vacuum Chamber on the Deposition of Cubic Boron Nitride Thin Film, Journal of the Korean institute of surface engineering, 2013, 46, 4, 139  crossref(new windwow)
L. Vel, G. Demazeau, J. Etoumeau, Mater. Sci. Eng., B10 (1991) 149

H. Holleck, J. Vac. Sci. Technol., A4 (1986) 2661

R. C. DeVries, in: R. E. Clausing (ed.), Diamond and Diamond Like Films and Coatings, Plenum Press, New York (1991) 151

R. Haubner, B. Lux, Diamond Relat. Mater., 2 (1993) 1277 crossref(new window)

R. Wentorf, Jr., J. Chem. Phys., 36 (1962) 1990 crossref(new window)

D. Litvinov, C. TaylorII, R. Clarke, Diamond Relat. Mater., 7 (1998) 360 crossref(new window)

W. A. Yarborough, J. Vac. Sci. Technol., A9 (1991) 1145

P. B. Mirkarimi, K. F. McCarty, D. L. Medlin, Mater. Sci. Eng., R21 (1997) 47

T. Yoshida, Diamond Relat. Mater., 5 (1996) 501 crossref(new window)

I. Konyashin, J. Bill, F. Aldinger, Chem. Vap. Deposition, 3 (1997) 239 crossref(new window)

W. Zhang, I. Bello, Y. Lifshitz, K. M. Chan, X. Meng, Y. Wu, C. Y. Chan, S.-T. Lee, Adv. Mater., 16 (2004) 1405 crossref(new window)

D. J. Kester, K. S. Ailey, R. F. Davis, K. L. More, J. Mater. Res., 8 (1993) 1213 crossref(new window)

H. S. Kim, J. K. Park, Y. J. Baik, I. H. Choi, J. Appl. Phys., 94 (2003) 3057 crossref(new window)

B. Malid, K. Reingke, W. Kulisch, Diamond Relat. Mater., 4 (2001) 184107

S. Ulrich, E. Nord, Surf. Coat. Technol., 200 (2006) 6465 crossref(new window)

M. Lattemann, S. Ulrich, Thin Solid Films, 515 (2006) 1058 crossref(new window)

F. P. Bundy, R. H. Wentorf, Jr, J. Chem. Phys. Part2: Lett., 40 (2001) L442

W. Dworschak, K. Jung, H. Ehrhardt, Thin Solid Films, 254 (1995) 65 crossref(new window)

S. W. Yang, K. P. Loh, P. Wu, Surf. Sci., 599 (2005) 128 crossref(new window)

D. H. Berns, M. A. Cappelli, D. K. Shuh, Diamond Relat. Mater., 6 (1997) 1883 crossref(new window)

K. Shell, S. Ulrich, E. Nold, Surf. Coat. Tech., 174-175 (2003) 1121