JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder
Cho, T.Y.; Yoon, J.H.; Kim, K.S.; Fang, W.; Joo, Y.K.; Song, K.O.; Youn, S.J.; Hwang, S.Y.; Chun, H.G.;
  PDF(new window)
 Abstract
High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature . In coating process a small portion of hard WC decomposes to less hard , W and C at the temperature higher than its decomposition temperature resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at to 0.65-0.76 at due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.
 Keywords
HVOF;nWC-Co;Thermal spraying;Optimal coating process;Friction Coefficients;
 Language
English
 Cited by
1.
터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅,주윤곤;윤재홍;조동율;천희곤;

Corrosion Science and Technology, 2013. vol.12. 1, pp.7-11 crossref(new window)
2.
A Study on HVOF Coating of WC-Metal Powder on Super Alloy In718 of Magnetic Bearing Shaft Material of Turbo-Blower,;;;;

International Journal of Precision Engineering and Manufacturing, 2014. vol.15. 7, pp.1479-1484 crossref(new window)
1.
HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower, Corrosion Science and Technology, 2013, 12, 1, 7  crossref(new windwow)
2.
IMPROVING THE SURFACE PROPERTIES OF INCONEL 718 BY APPLYING A CO2LASER HEAT TREATMENT TO A HIGH-VELOCITY OXY-FUEL COATING OF WC-CrCo POWDER, Surface Review and Letters, 2010, 17, 02, 207  crossref(new windwow)
3.
A study on HVOF coating of WC-metal powder on super alloy In718 of magnetic bearing shaft material of turbo-blower, International Journal of Precision Engineering and Manufacturing, 2014, 15, 7, 1479  crossref(new windwow)
4.
Surface properties and tensile bond strength of HVOF thermal spray coatings of WC-Co powder onto the surface of 420J2 steel and the bond coats of Ni, NiCr, and Ni/NiCr, Surface and Coatings Technology, 2009, 203, 20-21, 3250  crossref(new windwow)
5.
Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating, Journal of Materials Processing Technology, 2009, 209, 7, 3561  crossref(new windwow)
 References
1.
B. D. Sartwell, R. Kestler, K. O. Legg, W. Assink, A. Nardi, J. Schell, NRL Report No. XYZ, Naval Research Laboratory, Washington DC 20375 (2003) 1-5

2.
B. D. Sartwell, K. O. Legg, J. Schell, J. Sauer, P. Natishan, D. Dull, J. Falkowski, P. Beretz, J. Devereaux, C. Edwards, D. Parker, Naval Research Laboratory Report Number NRLIMR/6170-04-8762, (2004) 1-30

3.
B. D. Sartwell, K. Legg, B. Bodger, HVOF Thermal Spray Coatings as an Alternative to Hard Chrome Plating on Military & Commercial Aircraft, AESF/EPA Conference for Environmental Excellence, 231 (1999) 1-20

4.
J. R. Davis, Handbook of Thermal Spray Technology, ASM International, USA (2004) 1-30

5.
T. Y. Cho, J. H. Yoon, K. S. Kim, N. K. Baek, S. Y Hwang, S. J. Youn, H. G. Chun, HVOF Coating of Co-alloy T800 for the Improvement of the Performance and Durability of Military Hardware Components, 15th Aero Technology Symposium, Logistics Command ROKAF, September 15, 2006

6.
T. Y. Cho, J. H. Yoon, K .S. Kim, S. J. Youn, N. K. Baek, B. C. Park, S. Y. Hwang, H. G. Chun, Kor. Soc., Machine Tool Engineers, 15(6) (2006) 32-37

7.
K. S. Kim, N. K. Baek, J. H. Yoon, T. Y. Cho, S. J. Youn, S. Y. Oh, S. Y. Hwang, H. G Chun, J. Kor. Surface Engineering, 39(4) (2006) 179-189

8.
T. Y. Cho, J. H. Yoon, K. S, Kim, S. J. Youn, N. K. Baek, H. G. Chun, S. Y. Hwang, J. Kor. Inst., Surface Engineering, 39(5) (1966) 240-244

9.
B. Hwang, J. Ahn, S. Lee, Mater. Trans., 33A (2002) 2933

10.
T. Y. Cho, J, H. Yoon, K. S. Kim, B. G. Park, S. J. Youn, N. K. Baek, H. G. Chun, J. Korean Crystal Grow and Crystal Technology, 16(3) (2006) 121-126

11.
T. G. Massalski, et al., Binary Alloy Phase Diagram, Am. Soc. for Metals 1 (1986) 600

12.
A. W. Adamson, Physical Chemistry of Surfaces, 4th Ed. John Wiley and Sons (1982) 404-450