Advanced SearchSearch Tips
Surface Modification of Multi-walled Carbon Nanotubes for Enhancement of Dispersion and Electrochemical Properties
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Surface Modification of Multi-walled Carbon Nanotubes for Enhancement of Dispersion and Electrochemical Properties
Kim, Young-Ja; Zhang, Wentao; Lee, Hong-Ro; Kim, Jong-Hyee;
  PDF(new window)
Several methods for improving dispersion of carbon nanotubes (CNTs) have been investigated. CNTs modified by acids and hydrogen peroxide () showed improved dispersion. From SEM micrographs and photos of dispersion, CNTs modified with nitric acid and , showed no agglomeration in solution even standing for 4 months, which means successfully improved dispersion property. TEM micrographs of surface modified single CNT treated with 69% in boiling acid solution as the optimum method were obtained. For confirmation of CNTs' application to EDLC electrode materials, characteristics of EDLC have been analyzed by cyclic voltammetry curve, specific capacitance of unit cell, electrode discharge curves and AC impedance curve. From the results, it could be confirmed that electrochemical properties of CNTs were enhanced after surface modification with 69% acid treatment.
Carbon nanotubes;Surface modification;Electrochemical properties;Electrode double layer;
 Cited by
탄화규소 나노섬유의 고온 대기 및 SO2 가스분위기에서의 부식물성,김민정;이동복;

한국표면공학회지, 2010. vol.43. 1, pp.36-40 crossref(new window)
Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction, Journal of Physics and Chemistry of Solids, 2015, 83, 121  crossref(new windwow)
S. Iijima, Nature, 354 (1991) 56 crossref(new window)

T. W. Ebbessen, Ann. Rev. Mater. Sci. 24 (1994) 235 crossref(new window)

Christopher A, Dyke, M. James. , 10 (2004) 11

C. Dekker, Physics Today, 52 (1999) 22

V. Skakalova, U. Dettlaff-Weglikowska, S. Roth, Diamond and Related Materials, 13 (2004) 296 crossref(new window)

H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science, 293 (2001) 76 crossref(new window)

C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett., 70 (1997) 1480 crossref(new window)

R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, J. Power Sources, 84 (1999) 126 crossref(new window)

S. Wei, W. P. Kang, J. L. Davidson, J. H. Huang, Diam. Relat. Mater., 17 (2008) 906 crossref(new window)

J. Y. Lee, K. Liang, K. H. An, Y. H. Lee, Synthet. Met., 150 (2005) 153 crossref(new window)

P. X. Hou, S. Bai, Q. H. Yang, C. Liu, H. M. Cheng, Carbon, 40 (2002) 81 crossref(new window)

J. Li, T. Tang, X. Zhang, S. Li, M. Li, Mater. Lett., 61 (2007) 4351 crossref(new window)

N. Pierard, A. Fonseca, I. Willems, G. Van Tendeloo, J. B.Nagy, Chem. Phys. Lett. 335 (2001) 1 crossref(new window)

P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, Nature, 362 (1993) 522 crossref(new window)

Y. P. Sun, K. Fu, Y. Lin, W. Huang, Accounts Chem. Res. 35 (2002) 1096 crossref(new window)

S. Niyogl, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. C. Haddon, Accounts Chem. Res. 35 (2002) 1105 crossref(new window)

D. M. Guldi, G. M. A. Rahman, V. Sgobba, C. Ehli, Chem. Soc. Rev. 35 (2006) 471 crossref(new window)

M. Yang, J. Jiang, Y. Yang, X. Chen, G. Shen, Biosens. and Bioelectron. 21 (2006) 1791 crossref(new window)

J. L. Lyon, K. J. Stevenson, Electrochim. Acta, 53 (2008) 6714 crossref(new window)

G. Wang, M. Qu, Z. Yu, R. Yuan, Mater. Chem. Phys. 105 (2007) 169 crossref(new window)

L. Li, G. Wu, B. Q. Xu, Carbon, 44 (2006) 2973 crossref(new window)

S. M. Lipka, IEEE AES Systems Magazine, July 1997

T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, J. Power Sources, 60 (1996) 249 crossref(new window)

F. Pico, C. Pecharroman, A. Anson, M. T. Martinez, J. M. Rojo, J. Electrochem. Soc. 154 (2007) A579 crossref(new window)