Advanced SearchSearch Tips
Electrical and Structural Properties of GAZO Films Deposited by DC Magnetron Co-sputtering System with Two Cathodes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrical and Structural Properties of GAZO Films Deposited by DC Magnetron Co-sputtering System with Two Cathodes
Jie, Luo; Park, Se-Hun; Song, Pung-Keun;
  PDF(new window)
Ga/Al doped ZnO (GAZO) thin films were prepared on non-alkali glass substrate by co-sputtering system using two DC cathodes equipped with AZO (:2.0 wt%) target and GZO (:6.65 wt%) target. This study examined the influence of Al/Ga concentration and substrate temperature on the electrical, structural and optical properties of GAZO films. The lowest resistivity was obtained at room temperature. With increasing substrate temperature, resistivity of GAZO film decreased to a minimum value of at below . Furthermore, when 0.05% gas was introduced, resistivity of GAZO film decreased to . All the films had a preferred orientation along the (002) direction, indicating that the deposited films have hexagonal wurtzite structure formed by the textured growth along the c-axis. The average transmittance of the films was more than 85% in the visible light range.
Al doped ZnO;Ga doped ZnO;Ga/Al co-doped ZnO;Co-sputtering;
 Cited by
DC 마그네트론 스퍼터링법에 의한 대면적 투명전도성 ZnO(Al)와 ZnO(AlGa) 박막제조 및 물리적 특성 연구,손영호;최승훈;박중진;정명효;허영준;김인수;

한국진공학회지, 2013. vol.22. 3, pp.119-125 crossref(new window)
Fabrication and Study of Transparent Conductive Films ZnO(Al) and ZnO(AlGa) by DC Magnetron Sputtering, Journal of the Korean Vacuum Society, 2013, 22, 3, 119  crossref(new windwow)
The effects of impurity and temperature for transparent conducting oxide properties of Al:ZnO deposited by dc magnetron sputtering, Vacuum, 2012, 86, 10, 1452  crossref(new windwow)
Electrical resistivity change in Al:ZnO thin films dynamically deposited by bipolar pulsed direct-current sputtering and a remote plasma source, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010, 28, 4, 856  crossref(new windwow)
D. H. Kim, M. R. Park, G. H. Lee, Surf. Coat. Technol., 201 (2006) 927 crossref(new window)

S. H. Cho, J. H. Park, S. C. Lee, W. S. Cho, J. H. Lee, H. H. Yon, P. K. Song, J. Phys. Chem. of Solids, 69 (2008) 1334 crossref(new window)

Y. R. Park, D. G. Jung, Y. S. Kim, Jap. J. Appl. Phys., 47 (2008) 516 crossref(new window)

T. Minami, T. Miyata, Thin Solid Films, 517 (2008) 1474 crossref(new window)

S. Suzuki, T. Miyata, M. Ishii, T. Minami, Thin Solid Films, 434 (2003) 14 crossref(new window)

J. C. Lin, K. C. Peng, H. L. Liao, S. L. Lee, Thin Solid Films, 516 (2008) 5349 crossref(new window)

W. F. Liu, G. T. Du, Y. F. Sun, Y. B. Xu, T. P. Yang, X. S. Wang, Y. C. Chang, F. B. Qiu, Thin Solid Films, 515 (2007) 3057 crossref(new window)

S. E. Park, S. H. Park, J. Luo, P. K. Song, J. Kor. Inst. Surf. Eng., 41 (2008) 142 crossref(new window)

J. H. Bae, H. K. Kim, Thin Solid Films, 516 (2008) 7866 crossref(new window)

S. Y. Kim, J. M. Seo, H. W. Jang, J. S. Bang, W. O. Lee, T. Y. Lee, J. M. Myoung, Appl. Surf. Sci., 255 (2009) 4616 crossref(new window)

H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, 1974

V. Gupta, A. Mansingh, J. Appl. Phys., 60 (1996) 1063

J. T. Chen, J. Wang, R. F. Zhuo, D. Yan, J. J. Feng, F. Zhang, P. X. Yan, Appl. Surf. Sci., 255 (2009) 3959 crossref(new window)

D. G. Kim, S. H. Lee, G. H. Lee, S. C. Kwon, Thin Solid Films, 515 (2007) 6949 crossref(new window)