Advanced SearchSearch Tips
Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source
Kim, Wang-Ryeol; Jung, Uoo-Chang; Jo, Hyung-Ho; Park, Min-Suk; Chung, Won-Sub;
  PDF(new window)
Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of carbon increased with increasing the anode voltage ratio through investigation of ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.
DLC;Linear ion source;PVD;Anode voltage;Hardness;
 Cited by
하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능,차순용;김왕렬;박민석;권세훈;정원섭;강명창;

한국분말야금학회지, 2010. vol.17. 6, pp.456-463 crossref(new window)
접촉식 면적변화형 정전용량 변위센서의 접촉 안정성을 위한 기구의 개발,김성주;이원구;문원규;

대한기계학회논문집B, 2011. vol.35. 11, pp.1147-1156 crossref(new window)
J. Robertson, Mater. Sci. Eng., R 37 (2002) 129

J. Robertson, Surface and Coating Technology, 50 (1992) 185 crossref(new window)

K.-R. Lee, K. Y. Eun, Bull. of the Korean Inst. of Met. & Mater., 6(4) (1993) 345

K.-R. Lee, K. Y. Eun, I. Y. Kim, J. R. Kim, Thin Solid Films, 377-378 (2000) 261 crossref(new window)

C. K. Lee, Diamond & Related Materials, 17 (2008) 306 crossref(new window)

D. Sheeja, B. K. Tay, K. W. Leong, C. H. Lee, Diamond & Related Materials, 11 (2002) 1643 crossref(new window)

R. K. Singh, Z. H. Xie, A. Bendavid, P. J. Martin, P. Munroe, M. Hoffman, Diamond & Related Materials, 17 (2008) 975 crossref(new window)

D. Sheeja, B. K. Tay, S. M. Krishnan, L. N. Nung, Diamond & Related Materials, 12 (2003) 1389 crossref(new window)

J. Veverkova, S. V. Hainsworth Wear, 264 (2008) 518 crossref(new window)

J. C. Angus, P. Koidl, S. Domitz, Plasma Deposited Thin Films, CRC Press, Boca Raton, FL (1986) 89

H. Tsai, D. B. Bogy, J. Vac. Sci. Technol., A5 (1987) 3287

D. Nir, Thin Solid Films, 112 (1984) 41 crossref(new window)

M. David, R. Padiyath, S. V. Badu AIChE J., 37 (1991) 367 crossref(new window)

K. Enke, Thin Solid Films, 80 (1981) 227 crossref(new window)

J. W. Zou, K. Schmidt, K. Reichelt, B. Dischler, J. Appl. Phys., 67 (1990) 487 crossref(new window)

Y. H. Son, W. C. Jung, J. I. Jeong, N. G. Park, I. S. Kim, K. H. Kim, I. H. Bae, J. Kor. Vac. Soc., 9 (2000) 328

J. Robertson, Diamond & Related Materials, 2 (1993) 984 crossref(new window)

C. S. Lee, J.-K. Shin, J. K. Kim, K.-R. Lee, K.-H. Yoon, J. Kor. Vac. Soc., 11 (2002) 8