JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fractal Approach to Passivated Surface of Stainless Steel
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fractal Approach to Passivated Surface of Stainless Steel
Heo, Jung-Ho; Lee, Yong-Heon; Shin, Heon-Cheol;
  PDF(new window)
 Abstract
The morphology of the passivated surface of stainless steel (SS) was quantitatively characterized based on fractal geometry. In particular, the surface irregularities of the passivated 304 and 439 SSs were comparatively analyzed in terms of their self-similar fractal dimensions. The passivated surface of 439 SS in an acid-based electrolyte proved to have a higher fractal dimension, as compared to that of 304 SS, esp. at a scale of several tens of nanometers, strongly indicating the higher irregularity of the passivated surface. It is anticipated that the fractal approach suggested herein might be effectively utilized to analyze the irregularity of the steel surface and/or the compactness of the oxide film.
 Keywords
Corrosion;Passive film;Surface morphology;Fractal dimension;Stainless steel;
 Language
English
 Cited by
1.
Corrosion Resistance of Stainless Steels Analyzed by Fractal Geometry,;;;;

Journal of Electrochemical Science and Technology, 2010. vol.1. 2, pp.112-116 crossref(new window)
 References
1.
P. Schmuki, J. Solid State Electrochem., 6 (2002) 145. crossref(new window)

2.
C.-O. A. Olsson, D. Landolt, Electrochim. Acta, 48 (2003) 1093. crossref(new window)

3.
C. Calinski, H.-H. Strehblow, J. Electrochem. Soc., 136 (1989) 1328. crossref(new window)

4.
M. F. Toney, A. J. Davenport, L. J. Oblonsky, M. P. Ryan, C. M. Vitus, Phys. Rev. Lett., 79 (1997) 4282. crossref(new window)

5.
P. Schmuki, S. Virtanen, H. S. Isaacs, M. P. Ryan, A. J. Davenport, H. Bohni, T. Stenberg, J. Electrochem. Soc., 145 (1998) 791. crossref(new window)

6.
V. Maurice, W. P. Yang, P. Marcus, J. Electrochem. Soc., 145 (1998) 909. crossref(new window)

7.
D. Zuili, V. Maurice, P. Marcus, J. Phys. Chem. B, 103 (1999) 7896. crossref(new window)

8.
B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1983.

9.
B. B. Mandelbrot, D. E. Passoja, A. J. Paullay, Nature, 308 (1984) 721. crossref(new window)

10.
C. S. Pande, L. E. Richards, N. Louat, B. D. Dempsey, A. J. Schwoeble, Acta Metall., 35 (1987) 1633. crossref(new window)

11.
Z. G. Wang, D. L. Chen, X. X. Jiang, S. H. Ai, C. H. Shih, Scripta Metall., 22 (1988) 827. crossref(new window)

12.
L. Nyikos, T. Pajkossy, Electrochim. Acta, 30 (1985) 1533. crossref(new window)

13.
B. Sapoval, J.-N. Chazalviel, J. Peyriere, Phys. Rev. A, 38 (1988) 5867. crossref(new window)

14.
C. Douketis, Z. Wang, T. L. Haslett, M. Moskovits, Phys. Rev. B, 51 (1995) 11022. crossref(new window)

15.
H.-C. Shin, S.-I. Pyun, J. Electroanal. Chem., 531 (2002) 101. crossref(new window)

16.
M. Knudsen, Ann. Phys. (Leipzig), 28 (1909) 75.

17.
A.J. Burggraaf, J. Membr. Sci., 155 (1999) 45. crossref(new window)

18.
S. Haupt, H.-H. Strehblow, Corros. Sci., 37 (1995) 43. crossref(new window)