JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy
Hong, Won-Eui; Ro, Jae-Sang;
  PDF(new window)
 Abstract
Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.
 Keywords
SPC;poly-Si;TFT;Raman spectroscopy;
 Language
Korean
 Cited by
 References
1.
A. T. Voutsas, M. K. Hatalis, J. Electrochem. Soc. 139 (1992) 2659. crossref(new window)

2.
R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89. crossref(new window)

3.
S.-W. Lee, S.-K. Joo, IEEE Electron Dev. Lett. 17 (1996) 160. crossref(new window)

4.
J. S. Im, H. J. Kim, M. O. Thompson, Appl. Phys. Lett. 63 (1993) 2969.

5.
M. Wu, K. Pangal, J. C. Sturm, S. Wagner, Appl. Phys. Lett. 75 (1999) 2244. crossref(new window)

6.
R. S. Howel, M. Stewart, S. V. Karnik, S. K. Saha, M. K. Hatalis, IEEE Electron Device Lett., 21 (2000) 70. crossref(new window)

7.
M. Wu, X.-Z. Bo, J. C. Sturm, S. Wagner, IEEE Electron Device Lett., 49(11) (2002) 1993. crossref(new window)

8.
J. H. Cheon, J. H. Bae, J. Jang, Solid State Electronics, 52 (2008) 473. crossref(new window)

9.
J.-S. Ro, W.-E. Hong, SID 2006 Digest of Technical Papers, (2006) 1280.

10.
W.-E. Hong, J.-S. Ro, Thin Solid Films, 13 (2007) 515.

11.
Y. Ishikawa, Y. Yamamoto, T. Hatayama, Y. Uroka T. Fuyuki, PVSEC 12 (2001) 11.

12.
Jian Zi, H. Büscher, C. Falter, W. Ludwig, Kaiming Zhang, Xide Xie, Appl. Phys. Lett. 69 (1996) 200. crossref(new window)

13.
I.-W. Wu, A. Chiang, M. Fuse, L. Ovecoglu, T. Y. Huang, J. Appl. Phys. 65 (1989) 4036. crossref(new window)

14.
J. H. Kim, J. Y. Lee, J. Appl. Phys. 79 (1996) 1794. crossref(new window)