JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns
Yim, Kwang-Gug; Kim, Min-Su; Leem, Jae-Young;
  PDF(new window)
 Abstract
The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of . Growth temperature and thickness of the GaAs epitaxial layer were and 1 , respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at shows double domain (). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, () with spot, and clear (). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.
 Keywords
GaAs;Si;Reflection high-energy electron diffraction;Molecular beam epitaxy;
 Language
Korean
 Cited by
 References
1.
T. W. Kang, J. Y. Leem, T. W. Kim, Microelectronics J., 27 (1996) 423. crossref(new window)

2.
J. Y. Leem, D. Y. Kim, T. W. Kang, J. J. Lee, J. Y. Oh, Appl. Phys. Lett., 57 (1990) 2228. crossref(new window)

3.
H. Usui, S. Mukai, H. Yasuda, H. Mori, J. Cryst. Growth, 311 (2009) 2269. crossref(new window)

4.
H. Huang, X. Ren, J. Lv, Q. Wang, H. Song, S. Cai, Y. Huang, B. Qu, J. Appl. Phys., 104 (2008) 113114-1. crossref(new window)

5.
T. Soga, T. Jimbo, G. Wang, K. Ohtsuka, M. Umeno, J. Appl. Phys., 87 (2000) 2285. crossref(new window)

6.
D. Colombo, E. Grilli, M. Guzzi, S. Sanguinetti, A. Fedorov, H. von Kanel, G. Isella, J. Luminescence, 121 (2006) 375. crossref(new window)

7.
G. E. Becker, J. C. Bean, J. Appl. Phys., 48 (1997) 3395.

8.
Y. Ota, J. Electrochem. Soc., 126 (1979) 1761. crossref(new window)

9.
J. C. Bean, G. E. Becker, P. M. Petroff, T. E. Seidel, J. Appl. Phys., 48 (1977) 907. crossref(new window)

10.
J. C. Bean, G. A. Rozgonyi, Appl. Phys. Lett., 41 (1982) 752. crossref(new window)

11.
D. M. Zehner, C. W. White, G. W. Ownby, Appl. Phys. Lett., 36 (1980) 56. crossref(new window)

12.
T. de Jong, W. A. S. Dowma, L. Smit, V. V. Korablev, F. W. Saris, J. Vac. Sci. Technol. B, 1 (1983) 888. crossref(new window)

13.
A. Ishizaka, Y. Shiraki, J. Electrochem. Soc., 133 (1986) 666. crossref(new window)

14.
T. W. Kang, Y. T. Oh, J. Y. Leem, T. W. Kim, J. Material Sci. Lett., 11 (1992) 392. crossref(new window)

15.
C. Cochran, L. Foster, J. Electrochem. Soc., 109 (1962) 144. crossref(new window)