JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Morphological Studies on TiO2 Nanotubes Formed by Anodizing in Aqueous and Non-Aqueous Solutions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Morphological Studies on TiO2 Nanotubes Formed by Anodizing in Aqueous and Non-Aqueous Solutions
Kim, Byung-Jo; Moon, Sung-Mo; Jeong, Yong-Soo; Kim, Byung-Kwan;
  PDF(new window)
 Abstract
nanotubes were formed on Ti by anodizing in 1 M + 0.3 M HF and 0.1 M + 2% in ethylene glycol, and their surface and cross-sectional morphologies were observed using FE-SEM as a function of anodizing time and applied voltage. The cross-section of the nanotubes was readily observed from the small pieces of nanotubes remaining near the scratch lines after scratching of the anodized surface. nanotubes was observed to grow faster and thicker in non-aqueous solution than in aqueous solution. Diameter of nanotubes was proportional to the applied voltage, irrespective of the type of the electrolyte, and it is recommended to use non-aqueous solutions for the preparation of larger diameter of nanotubes.
 Keywords
Nanotube;Anodic oxidation;Morphology of oxide film;
 Language
Korean
 Cited by
 References
1.
H. Tsuchiya, P. Schmuki, Electrochem. Commun. 6 (2005) 1131.

2.
H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, P. Schmuki, Small 1 (2005) 722. crossref(new window)

3.
H. Tsuchiya, J. M. Macak, L. Taveira, P. Schmuki, Chem. Phys. Lett., 410 (2005) 188. crossref(new window)

4.
H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun., 7 (2005) 295. crossref(new window)

5.
H. Tsuchiya, P. Schmuki, Electrochem. Commun., 7 (2005) 49. crossref(new window)

6.
I. Sieber, H. Hildeberand, A. Friedrich, P. Schmuki, Electrochem. Commun., 7 (2005) 7.

7.
J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, J. Biomed. Mater. Res., 75A (2005) 928. crossref(new window)

8.
A. Rothschild, F. Edelman, Y. Komen, F. Cosandey, Sens. Actuat. B 67 (2000) 282. crossref(new window)

9.
A. Mils, G. Hill, S. Bhopal, I. P. Parkin, S. A. O'Meill, J. Photochem. Photobiol. A 160 (2003) 185. crossref(new window)

10.
G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol Energy Mater Sol Cells, 90 (2006) 2011. crossref(new window)

11.
D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 16 (2001) 3331. crossref(new window)

12.
T. J. Webster, J. U. Ejiofor, Biomaterials, 25 (2004) 4731. crossref(new window)

13.
K. Anselme, M. Bigerelle, J. Mater. Sci. Mater. Med., 17 (2006) 471. crossref(new window)

14.
C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, J. Chem. Rev., 105 (2005) 1025. crossref(new window)

15.
C. H. Kwon, J. H. Kim, I. S. Jung, H. Shin, K. H. Yoon, J. Ceramics Int., 29 (2003) 851. crossref(new window)

16.
H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J. Phys., Chem. C, 111 (2007) 7235. crossref(new window)

17.
D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 16 (2001) 3331. crossref(new window)