Advanced SearchSearch Tips
Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings
Gyawali, Gobinda; Woo, Dong-Jin; Lee, Soo-Wohn;
  PDF(new window)
nano-composite coatings were prepared by pulse current (PC) electrodeposition and direct current (DC) electrodeposition techniques. The micro-structure of the coatings was characterized by scanning electron microscopy (SEM), vickers microhardness, X-Ray Diffraction (XRD) and wear-friction tests. The results showed that the micro-structure and wear performance of the coatings were affected by the electrodeposition techniques. Pulse current electrodeposited composite coatings exhibited higher microhardness, smooth surface, and better wear resistance properties as compared to coatings prepared under DC condition. The composite coatings prepared at 50 Hz pulse frequency with 10% duty cycles has shown higher codeposition of nano-particles. Consequently, increased microhardness and less plastic deformations occurred in coatings during sliding wear test. The XRD patterns revealed that the increased pulse frequencies changed the preferred (100) nickel crystallite orientations into mixed (111) and (100) orientations.
Composite coatings;Pulse electrodepositon;Microhardness;
 Cited by
Mechanical and Tribological Properties of Pulse and Direct Current Electrodeposited Ni-TiO2 Nano Composite Coatings,Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn;

한국표면공학회지, 2010. vol.43. 6, pp.283-288 crossref(new window)
Mechanical and Tribological Properties of Pulse and Direct Current Electrodeposited Ni-TiO2Nano Composite Coatings, Journal of the Korean institute of surface engineering, 2010, 43, 6, 283  crossref(new windwow)
J. Fransaer, J. P. Celis, J. R. ROGs, Met. Finish., 91 (1993) 97.

M. Musiani, Electrochim. Acta, 45 (2000) 3397. crossref(new window)

M. Srivastava, V. K. W. Grips, A. Jain, K. S. Rajam, Surf. Coat. Technol., 202 (2007) 310. crossref(new window)

L. M. Chang, M. Z. An, H. F. Guo, S. Y Shi, App. Surf. Sci., 253 (2006) 2132. crossref(new window)

W. Wang, F. Y Hou, H. Wang, H. T. Guo, Scripta Mater., 53 (2005) 613. crossref(new window)

P. Gyftou, E. A. Pavlatou, N. Spyrellis, App. Surf. Sci., 254 (2008) 5910. crossref(new window)

L. M. Chang, H. F. Guo, M. Z. An, Mater. Lett., 62 (2008) 3313. crossref(new window)

N. S. Qu, K. C. Chan, D. Zhu, Scripta Mater., 50 (2004) 1131. crossref(new window)

L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, App. Surf. Sci., 252 (2006) 3591. crossref(new window)

D. Thiemig, A. Bund, Surf. Coat. Technol., 202 (2008) 2976. crossref(new window)

M. R. Vaezi, S. K. Sadrnezhaad, L. Nikzad, Colloid Surf. A, 315 (2008) 176. crossref(new window)

F. Erler, C. Jakob, H. Romanus, L. Spiess, B. Wielage, T. Lampke, S. Steinhauser, Electrochim. Acta, 48 (2003) 3063. crossref(new window)

J. Li, Y Sun, X. Sun, J. Qiao, Surf. Coat. Technol., 192 (2005) 331. crossref(new window)

A. Abdel Aal, Mater. Sci. Eng. A, 474 (2008) 181. crossref(new window)

S. H. Yeh, C. C. Wan, J. Appl. Electrochem., 24 (1994) 993.