JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method
Koo, Bon-Keup;
  PDF(new window)
 Abstract
The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.
 Keywords
Electrodeposition;Ni-Fe;Nanowire;Thin film;Stress;Templates;Microhardness;Ultrasonic treatment;
 Language
Korean
 Cited by
 References
1.
F. E. Atalay, H. Kayaa, S. Atalay, S. Tari, J. Alloys and Com. and Phys., 469 (2009) 458. crossref(new window)

2.
V, S, Rania, S, S, Yoon, B, P, Raoc, C, Kim, Mater. Chem. and Phys., 112 (2008) 1133. crossref(new window)

3.
S. H. Choe, Y. Y. Charg, K. Y. Hwarg, J. Y. Khim, J. of KoSES, 4 (1999) 85.

4.
R. L. White, R. M. H. New, R. F. W. Pease, IEEE Trars. on Magnetics, 33 (1997) 990. crossref(new window)

5.
T. Osaka, Electrochim. Acta, 44 (1999) 3885. crossref(new window)

6.
E. Gomez, E. Pellieer, E. Valles, Electrochem. Comm., 7 (2005) 275. crossref(new window)

7.
E. I. Cooper, C. Bonhote, J. Heidmarn, Y. Hsu, P. Kern, J. W. Lam, M. Ramasubramanian, N. Robertson, L. T. Romankiw, H. Xu, IBM J. Res. Develop., 49 (2005) 103. crossref(new window)

8.
F. E. Rasmussen, J. T. Ravnkilde, P. T. Targ, Sensors ard Actuators A, 92 (2001) 242. crossref(new window)

9.
S. Guan. B. J. Nelson, J. Electrochem. Soc., 152 (2005) C190. crossref(new window)

10.
A. Kohn, M. Eizenberg, Y. Sverdlov, Mater. Sci. Eng. A, 302 (2001) 18. crossref(new window)

11.
Y. Xia, G. M. Whitesides, Angew. Chem. Int. Ed., 37 (1998) 550. crossref(new window)

12.
B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, G. M. Whitesides, Annu. Rev. Mater. Res., 34 (2004) 339. crossref(new window)

13.
O. D. Velel, T. A. Jede, R. F. Lobo, A. M. Lenhoft, Nature, 389 (1997) 447.

14.
S. H. Park, Y. Xia, Chem. Mater., 281 (1998) 538.

15.
B. T. Hollard, C. Blarford, A. Stein, Science, 281 (1998) 538. crossref(new window)

16.
R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature, 337 (1989) 147. crossref(new window)

17.
C. R. Martin, Acc. Chem. Res., 28 (1995) 61 crossref(new window)

18.
M. Trau, N. Yao, E. Kim, Y. Xia, G. M. Whitesides, I. A. Aksay, Nature, 390 (1997) 674.

19.
N. V. Myung, L. Lim, J. P. Fluerial, M. Yun, W. West, D. Choi, Nanotechnology, 15 (2004) 833. crossref(new window)

20.
S. Saedi, M. Ghorbari, Mater. Chem. Phys., 91 (2005) 417. crossref(new window)

21.
N. Zech, E. J. Podlaha, D. Lardolt, J. Electrochem. Soc., 146 (1999) 2886. crossref(new window)

22.
J, Vaes, J, Fransaer, J,-P, Celis, J, Electrochem, Soc., 147 (2000) 3718. crossref(new window)

23.
A. Brenner, Electrodeposition of Alloys, Academic Press, New York, (1963) 84.

24.
B. K. Koo ard B. Y. Yoo, Surf. Coat. Technol., 205 (2010) 740. crossref(new window)