JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of the Effect of Solution Acidity and Organic Additives on the Electrodeposition of Trivalent Chromium Ions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of the Effect of Solution Acidity and Organic Additives on the Electrodeposition of Trivalent Chromium Ions
Lee, Joo-Yul; Van Phuong, Nguyen; Kang, Dae-Keun; Kim, Man; Kwon, Sik-Chol;
  PDF(new window)
 Abstract
The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of electroreduction of trivalent chromium ions and solution stability. It was found that solution acidity controlled at pH 2.5 showed the widest current range for bright electrodeposits in the presence of PEG additives, which reduced the local current intensification at high current densities. Through complex interaction between PEG additives and hydrogen ion, that is, solution acidity, electrode potential was moved in the negative direction in the bulk solution, while it shifted in the positive when electric potential was scanned. In conjunction with electrochemical quartz crystal microbalance (EQCM), it was found that PEG additives had a role in promoting the electron transfer to trivalent chromium ion complexes in bulk solution and their adsorption at the electrode surface as well as interfering with hydrogen ion reduction process below pH 2.5. The PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at low speed.
 Keywords
Trivalent Cr electroplating;Solution acidity;Organic additives;
 Language
Korean
 Cited by
1.
Polyethylene glycol이 3가크롬 전기도금에 미치는 효과,이주열;;임성환;한승전;권식철;

한국표면공학회지, 2011. vol.44. 1, pp.7-12 crossref(new window)
1.
Non-destructive Analysis of Nano-sized Crack Morphology of Electro-deposit by Using Small Angle Neutron Scattering, Journal of the Korean institute of surface engineering, 2016, 49, 2, 111  crossref(new windwow)
 References
1.
G. Hong, K. S. Siow, G. Zhiqiang, A. K. Hsieh, Plat. Surf. Fin., 88 (2001) 69.

2.
Y. B. Song, D.-T. Chin, Electrochim. Acta, 48 (2002) 349. crossref(new window)

3.
Y. B. Song, D.-T. Chin, Plat. Surf. Fin., 87(9) (2000) 80.

4.
F. I. Danilov, V. S. Protsenko, T. E. Butyrina, E. A. Vasil'eva, A. S. Baskevich, Protec. of Met., 42(6) (2006) 560. crossref(new window)

5.
Z. Zeng, Y. Sun, J. Zhang, Electrochem. Commun., 11 (2009) 331. crossref(new window)

6.
A. V. Pamfilov, A. I. Lopushanska, A. M. Balter, J. Phys. Chem. USSR, 36 (1962) 2481.

7.
A. V. Pamfilov, A. I. Lopushanska, A. M. Balter, J. Phys. Chem. USSR, 37 (1963) 615.

8.
J. Szynkarczuk, I. Drela, J. Kubicki, Electrochim. Acta, 34 (1989) 399. crossref(new window)

9.
Y. S. Won, D. H. Cho, Y. H Kim, J. N. Lee, S. S. Park, J. Appl. Poly. Sci., 117 (2010) 2083. crossref(new window)

10.
J. C. Ballesteros, P. Diaz-Arista, Y. Meas, R. Ortega, G. Trejo, Electrochim. Acta, 52(11) (2007) 3686. crossref(new window)

11.
T. Akiyama, S. Kobayashi, J. Ki, T. Ohgai, H. Fukushima, J. Appl. Electrochem., 30 (2000) 817. crossref(new window)

12.
J.-Y. Lee, M. Kim, S. C. Kwon, Trans. Nonferrous Met. Soc. China, 19 (2009) 819. crossref(new window)

13.
Z. V. Feng, X. Li, A. A. Gewirth, J. Phys. Chem. B, 107 (2003) 9415. crossref(new window)

14.
A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd Ed. Wiley (2001).

15.
V. Protsenko, F. Danilov, Electrochim. Acta 54 (2009) 5666. crossref(new window)

16.
V. N. Korshunov, V. A. Safonov, L. N. Vykhodtseva, Russian J. Electrochem., 44(3) (2008) 275.