JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Heat Transfer Characteristics of the Large Dimension Heater Plate for a Semiconductor Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Heat Transfer Characteristics of the Large Dimension Heater Plate for a Semiconductor Process
Lee, Yun-Yong; Kang, Hwan-Kook; Moon, Seok-Hwan;
  PDF(new window)
 Abstract
The numerical study for the effect of various factors that affect the temperature distribution of the process glass installed above the large rectangular heater plate was carried out. For the calculation, heat flux, distance between heat source and process glass plate, effect of vacuum condition and convection in a chamber were considered as important factors. The results showed that the temperature gradient on the glass was increased at the natural convection because of the buoyancy force increases due to the heated air. Also, the more heat flux and distance between the heater plate and glass increases, the more increasing the temperature gradient was. In the case of isothermal heating wall, the temperature variation was smaller than the uniform heat flux condition.
 Keywords
Heater plate;Process glass;Heat flux;Isothermal heating wall;
 Language
Korean
 Cited by
1.
기-액 상변화 열전달식 고온 히터 플레이트의 작동 특성과 성능에 관한 연구,강환국;임광빈;

한국표면공학회지, 2013. vol.46. 6, pp.283-289 crossref(new window)
1.
A Study on the Heat Transfer Characteristics and Performance of the High Temperature Range Heater Plate Using Liquid-Vapor Phase Change Heat Transfer, Journal of the Korean institute of surface engineering, 2013, 46, 6, 283  crossref(new windwow)
 References
1.
Y. D. Chung, D. H. Cho, N. M. Park, W. S. Han, S. B. Bae, K. S. Lee, J. Kim, S. Y. Oh, 6th ICAMD, (2009).

2.
T. J. Mountziaris, K. F. Jenson, J. Eletrochemical Soc., 138 (1991) 2426. crossref(new window)

3.
R. Mucciato, N. J. Lovergine, J. of Crystal Growth, 221 (2000) 758. crossref(new window)

4.
T. Bergunde, M. Dauelsberg, L. Kadinski, Yu. N. Makarov, V. S. Yuferev, D. Schmiz, G. Strauch, J. of Crystal Growth, 180 (1997) 660. crossref(new window)

5.
F. Durst, L. Kadinski, Yu. N. Makarov, M. Schfer, M. G. Vasieliev, V. S. Yuferev, J. Crystal Growth, 172 (1997) 389. crossref(new window)

6.
L. Kadinski, Yu, N. Makarov, M. Schfer, M. G. Vasieliev, V. S. Yuferev, J. Crystal Growth, 146 (1995) 209. crossref(new window)

7.
J. H. Lee, J. B. Yoo, S. I. Bae, J. Kor. Crystal Growth and Crystal Tech., 15 (2005) 135.

8.
J. S. Park, H. G. Kwon, H. H. Cho, Proc. KSME, (2007) 3165.

9.
S. Y. Lee, H. H. Cho, Y. W. Lee, Proc. KSME, (2000) 261.

10.
F. P. Incorpera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer 5th Ed. (2001) John Wiley & Sons Inc.