JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate
Jung, Doo-Young; Kang, Chan-Hyoung;
  PDF(new window)
 Abstract
A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.
 Keywords
Nanocrystalline diamond film;Microwave plasma CVD;Nucleation and growth;Arrhenius equation;Activation energy;
 Language
English
 Cited by
1.
마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과,김인섭;강찬형;

한국표면공학회지, 2013. vol.46. 1, pp.29-35 crossref(new window)
2.
초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과,나봉권;강찬형;

한국표면공학회지, 2013. vol.46. 2, pp.68-74 crossref(new window)
3.
W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동,박동배;명재우;나봉권;강찬형;

한국표면공학회지, 2013. vol.46. 4, pp.145-152 crossref(new window)
4.
철강 위에 SiC 중간층을 사용한 나노결정질 다이아몬드 코팅,명재우;강찬형;

한국표면공학회지, 2014. vol.47. 2, pp.75-80 crossref(new window)
5.
나노결정질 다이아몬드가 코팅된 SiC 마모시험기 볼,임종환;강찬형;

한국표면공학회지, 2014. vol.47. 5, pp.263-268 crossref(new window)
1.
Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD, Journal of the Korean institute of surface engineering, 2013, 46, 1, 29  crossref(new windwow)
2.
Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate, Journal of the Korean institute of surface engineering, 2013, 46, 2, 68  crossref(new windwow)
3.
Growth of Nanocrystalline Diamond on W and Ti Films, Journal of the Korean institute of surface engineering, 2013, 46, 4, 145  crossref(new windwow)
4.
Nanocrystalline Diamond Coated SiC Balls in Tribometer, Journal of the Korean institute of surface engineering, 2014, 47, 5, 263  crossref(new windwow)
5.
Heat Spreading Properties of CVD Diamond Coated Al Heat Sink, Journal of the Korean institute of surface engineering, 2015, 48, 6, 297  crossref(new windwow)
6.
Nanocrystalline Diamond Coating on Steel with SiC Interlayer, Journal of the Korean institute of surface engineering, 2014, 47, 2, 75  crossref(new windwow)
 References
1.
D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211. crossref(new window)

2.
J. Philip, P. Hess, T. Feygelson, J. E. Buttler, S. Chattopadhyay, K. H. Chen, L. C. Chen, J. Appl. Phys. 93 (2003) 2164. crossref(new window)

3.
D. Y. Jung, C. H. Kang, J. Kor. Inst. Surf. Eng. 42 (2009) 216. crossref(new window)

4.
K. O. Schweitz, R. B. Schou-Jensen, S. S. Eskildsen, Diamond Relat. Mater. 5 (1996) 206. crossref(new window)

5.
S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036. crossref(new window)

6.
E. Kondoh, T. Ohta, T. Mitomo, K, Ohtsuka, J. Appl. Phys. 73 (1993) 3041. crossref(new window)

7.
T. G. McCauley, D. M. Gruen, A. R. Krauss, Appl. Phys. Lett. 73 (1998) 1646. crossref(new window)

8.
X. Xiao, J. Birrel, J. E. Gerbi, O. Auciello, J. A. Carlisle, J. Appl. Phys. 96 (2004) 2232. crossref(new window)

9.
W. Kulisch, C. Popov, S. Boycheva, M. Jelinek, P. N. Gibson, V. Vorlicek, Surf. Coat. Technol. 200 (2006) 4731. crossref(new window)

10.
D. C. Barbosa, F. A. Almeida, R. F. Silva, N. G. Ferreira, V. J. Trava-Airoldi, E. J. Corat, Diamond Relat. Mater. 18 (2009) 1283. crossref(new window)

11.
P. C. Redfern, D. A. Horner, L. A. Curtiss, D. M. Gruen, J. Phys. Chem. 100 (1996) 11654. crossref(new window)

12.
M. Sternberg, P. Zapol, L. A. Curtiss, Phys. Rev. B 69 (2003) 205330.

13.
T. S. Yang, J. Y. Lai, C. L. Cheng, M. S. Wong, Diamond Relat. Mater. 10 (2001) 2162.

14.
A. Stacey, I. Aharonovich, S. Prawer, J. E. Butler, Diamond Relat. Mater. 18 (2009) 51. crossref(new window)

15.
J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon Press, Oxford, (1965) 98.

16.
J. A. Venables, G. D. T. Spiller, M. Hanbcken, Rep. Prog. Phys. 47 (1984) 399. crossref(new window)

17.
A. R. Kim, H. J. Park, K. H. Jeong, J. G. Lee, H. S. Nam, E. G. Lee, C. H. Kang, Thin Solid Films, 517 (2009) 3827. crossref(new window)