Advanced SearchSearch Tips
Mechanical Properties of Nitrided STS 431 Martensitic Stainless Steel by the Active Screen Ion Nitriding
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Mechanical Properties of Nitrided STS 431 Martensitic Stainless Steel by the Active Screen Ion Nitriding
Bang, Hyun-Bae; Jung, Uoo-Chang; Jung, Won-Sub; Cha, Byung-Chul;
  PDF(new window)
Martensitic stainless steel STS 431 has been nitrided by active screen ion nitriding under the various temperature and time. The thickness of diffusion layer, case depth, hardness and composition phases were investigated using field emission scanning electron microscopy (FE-SEM), micro-Vickers hardness tester, X-ray diffraction (XRD) and glow discharge spectroscopy (GDS). It was observed that the thickness of diffusion layer depends strongly on the treatment temperature and time. A sample, which was nitrided at for 8hours, was a maximum hardness of Hv0.01 1558 and nitride layer of . As shown in XRD patterns, and expanded martensite () phases which was saturated with nitrogen solid solution were in the nitrided layer treated at for 2 hours. Composition phases of and () were observed after active screen nitriding at for 8 hours.
Active screen;Ion nitriding;STS 431;Martensitic stainless steel;Expanded martensite;Wear;
 Cited by
침탄질화 처리된 SCM415강의 깊이에 따른 확산 및 마모특성 변화,이수연;윤국태;허석환;이찬규;

한국표면공학회지, 2011. vol.44. 5, pp.207-212 crossref(new window)
The Change in Diffusion Coefficient and Wear Characteristic in Carbonitriding Layer of SCM415 Steel, Journal of the Korean institute of surface engineering, 2011, 44, 5, 207  crossref(new windwow)
C. X. Li, T. Bell, Corros. Sci., 48 (2006) 2036. crossref(new window)

Yun-tao Xi, Dao-xin Liu, Dong Han, Surf. Coat. Technol., 202 (2008) 2577. crossref(new window)

S. Ahangarani, A. R. Sabour, F. Mahboubi, T. Shahrabi, J. Alloys Compd., 484 (2009) 222. crossref(new window)

S. Corujeira Gallo, H. Dong, Vacuum, 84 (2009) 321 crossref(new window)

M. Keshavarz Hedayati, F. Mahboubi, T. Nickchi, Vacuum, 83 (2009) 1123. crossref(new window)

C. X. Li, T. Bell, Wear, 256 (2004) 1144. crossref(new window)

C. X. Li, T. Bell, Corros. Sci., 46 (2004) 1527. crossref(new window)

S. Janosi, Z. Kolozsvary, A. Kis, Met. Sci. Heat Treat., 46 (2004) 310. crossref(new window)

J. Flis, J. Mankowski, E. Rolinski, Surf. Eng., 5 (1989) 151. crossref(new window)

Y. T. Xi, D. X. Liu, D. Han, Z. F. Han, Acta Metall. Sinica (English Letters), 21 (2008) 21. crossref(new window)

I. Alphosa, A. Chainani, P. M. Raole, B. Ganguli, P. I. John, Surf. Coat. Technol., 150 (2002) 263. crossref(new window)

N. Mingolo, A. P. Tschiptschin, C. E. Pinedo, Surf. Coat. Technol., 201 (2006) 4215. crossref(new window)

P. Corengia, G. Ybarra, C. Moina, A. Cabo, E. Broitman, Surf. Coat. Technol., 187 (2004) 63. crossref(new window)

S. Corujeira Gallo, H. Dong, Surf. Coat. Technol., 203 (2009) 3669. crossref(new window)

S. G. Kim, S. W. Kim, P. J. Brand, J. of Korean Society for Heat Treatment, 23 (2010) 3.

S. K. Kim, J. S. Yoo, J. M. Priest, M. P. Fewell, Surf. Coat. Technol., 163-164 (2003) 380. crossref(new window)

Metals Handbook Ninth Edition (American Society for Metals, USA), 3 (1980) 29.

I. Sherrington, P. Hayhurst, Wear, 249 (2001) 182. crossref(new window)