JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate
Lee, Su-Hyung; Kim, Jung-Soo; Kang, Nam-Hyun; Jo, Hyung-Ho; Nam, Dae-Guen;
  PDF(new window)
 Abstract
Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.
 Keywords
Graphene;PEMFC;Bipolar plate;Stainless steel;Electro spray coating;
 Language
Korean
 Cited by
 References
1.
S. J. C. Cleghorn, X. Ren, T. Espringer, M. S. Wilson, C. Zawodzinski, T. A. Azwodzinski, S. Gottesfeld, Int. J. Hydrogen Energy, 22 (1997) 1137. crossref(new window)

2.
J. Ihonen, F. Jaouen, G. Lindbergh, G. Sndholm, Electrochimica Acta, 46 (2001) 2899. crossref(new window)

3.
J. R. Selman, Fuel Cells, Trends in Research and Application, Electric Power Research Inst., Calif., (1986).

4.
D. Linden, Handbook of Batteries and Fuel Cells, Mcgraw-Hill, NY, (1984).

5.
H. Tsuchiya, O. Kobayashi, Int. J. Hydrogen Energy, 29(10) (2004) 985. crossref(new window)

6.
T. M. Besmann, J. W. Klett, J. J. Henry, Jr., E. L. -Curzio, J. Electrochem. Soc., 147 (2000) 4083. crossref(new window)

7.
D. P. Davies, P. L. Adcock, M. Turpin, S. J. Rowen, J. Appl. Electrochem., 30 (2000) 101. crossref(new window)

8.
J. H. Ahn, Polymer Sci. and Tech., 22 (2011) 126. crossref(new window)

9.
R. K. Prud'Homme, I. A. Aksay, D. Adamson, A. A. Abdala, J. Liu et al., Chem. Mater., 19 (2007) 4396. crossref(new window)

10.
D. P. Davies, P. L. Adcock, M. Turpin, S. J. Rowen, J. Appl. Electrochem., 30 (2000) 101. crossref(new window)

11.
H. Wang, M. A. Sweikart, J. Turner, J. Power Sources, 115 (2003) 243. crossref(new window)

12.
N. Cunningham, M. Lefèevre, G. Lebrun, J.-P. Dodelet, J. Power Sources, 143 (2005) 93. crossref(new window)

13.
A. B. Bourlios, D. Gournis, D. Petridis, T. Szabo, A. Szeri, Dekany Langmuir, 19 (2003) 6050. crossref(new window)

14.
D. A. Nguyen, Y. R. Lee, A. V. Raghul, H. M. Jeong, C. M. Shin, B. K. Kim, Polym. Int., 58 (2009) 412. crossref(new window)

15.
J. Y. Jang, M. S. Kim, H. M. Jeong, C. M. Shin, Compos. Sci. Tech., 69 (2009) 186. crossref(new window)

16.
C. L. Lee, C. N. Yang, Machine and Mater., 21 (2009) 24.