JOURNAL BROWSE
Search
Advanced SearchSearch Tips
High Temperature Durability Amorphous ITO:Yb Films Deposited by Magnetron Co-Sputtering
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
High Temperature Durability Amorphous ITO:Yb Films Deposited by Magnetron Co-Sputtering
Jung, Tae Dong; Song, Pung Keun;
  PDF(new window)
 Abstract
Yb-doped ITO (ITO:Yb) films were deposited on unheated non-alkali glass substrates by magnetron cosputtering using two cathodes (DC, RF) equipped with the ITO and target, respectively. The composition of the ITO:Yb films was controlled by adjusting the RF powers from 0 W to 480 W in 120 W steps with the DC power fixed at 70 W. The ITO:Yb films had a higher crystallization temperature () than that of the ITO films (), which was attributed to both larger ionic radius of and higher bond enthalpy of , compared to ITO. This amorphous ITO:Yb film post-annealed at showed a resistivity of , indicating that a introduction of Yb increased resistivity of the ITO film. However, these amorphous ITO:Yb films showed a high etching rate, fine pattering property, and a very smooth surface morphology above the crystallization temperature of the amorphous ITO films (about ). The transmittance of all films was >80% in the visible region.
 Keywords
TCO;Yb-doped ITO;Amorphous ITO;Co-Sputtering;
 Language
English
 Cited by
1.
RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성,이기창;조광민;이준형;김정주;허영우;

한국표면공학회지, 2014. vol.47. 5, pp.239-243 crossref(new window)
1.
Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering, Journal of the Korean institute of surface engineering, 2014, 47, 5, 239  crossref(new windwow)
 References
1.
Y. H. Jung, E. S. Lee, K. H. Kim, J. Kor. Inst. Surf. Eng., 38 (2005) 150.

2.
Z. C. Jin, I. Harmberg, C. G. Granqvist, Thin Solid Films, 64 (1988) 381.

3.
P. K. Song, Y. Shigesato, I. Yasui, D. C. Paine, Jpn. J. Appl. Phys., 37 (1998) 1870. crossref(new window)

4.
J. E. A. van den Meerakker, P. C. Baarslag, W. Walrave, T. J. Vink, Thin Solid Films, 266 (1995) 152. crossref(new window)

5.
E. Nishimura, M. Ando, K. Onisawa, Jpn. J. Appl. Phys., 35 (1996) 2788. crossref(new window)

6.
D. C. Paine, T. Whitson, D. Janiac, Jpn. J. Appl. Phy., 85 (1999) 8445. crossref(new window)

7.
P. K. Song, H. Akao, M. Kamei, Y. Shigesato, Jpn. J. Appl. Phys., 38 (1999) 5224. crossref(new window)

8.
S. I. Kim, S. H. Cho, P. K. Song, J. Kor. Phys. Soc., 54 (2009) 1297. crossref(new window)

9.
Y. M. Kang, S. H. Kwon, J. H. Choi, Y. J. Cho, P. K. Song, Thin Solid Films, 518 (2010) 3081. crossref(new window)

10.
D. Y. Lee, J. R. Lee, P. K. Song, Surf. Coat. Technol., 202 (2008) 5718. crossref(new window)

11.
T. S. Kim, C. H. Choi, T. S. Jeong and K. H. Shim, J. Kor. Phys. Soc., 51 (2004) 534.

12.
C. Guillen, J. Herrero, Vacuum, 80 (2006) 615. crossref(new window)

13.
Y. Shigesato, D. C. Paine, Appl. Phys. Lett., 62 (1993) 1268. crossref(new window)