Advanced SearchSearch Tips
Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool
Son, Kyung-Sik; Lee, Jung-Hoon; Choi, Yong-Je; Jung, Uoo-Chang; Chung, Won-Sub;
  PDF(new window)
In order to improve the performance of electrodeposited diamond-nickel composite, surface modification of diamond particles was carried out using powder immersion reaction assisted coating (PIRAC). Titanium and chromium were selected as coating elements, which are known as carbide former. With respect to the powder elements, various phases were formed on diamond; metallic Ti and TiC for Ti powder, for Cr powder, and TiC and for Ti-Cr mixed powder. Surface modified diamond particle showed higher specific surface area, especially Ti coating induced considerable increase of specific surface area. The increase of specific surface area suggests increase of surface roughness, and that was confirmed by surface observation using FE-SEM. In addition, wear properties of diamond-nickel composite including surface modified diamonds were improved, and Ti coated diamond showed the highest performance. The wear property of diamond-nickel composite is dependent on adhesion strength between diamond particle and nickel layer. Therefore, surface modification of diamond particle by PIRAC increasing surface roughness is effective to improve the properties of diamond-nickel composite.
Diamond;Intermediate layer;PIRAC;Wear;
 Cited by
C. R. Lin, C. T. Kuo, Surf. Coat. Technol., 110 (1998) 19. crossref(new window)

L. W. de Resende, E. J. Corat, V. J. Trava-Airoldi, N. F. Leite, Diam. Relat. Mater., 10 (2001) 332. crossref(new window)

H. K. Tonshoff, H. Hillmann-Apmann, Diam. Relat. Mater., 11 (2002) 742. crossref(new window)

E. C. Lee, J. W. Choi, Surf. Coat. Technol., 148 (2001) 234. crossref(new window)

J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung, C. O. Kim, H. T. Hai, Surf. Coat. Technol., 201 (2006) 3793. crossref(new window)

Y. S. Liao, S. Y. Luo, Wear, 157 (1992) 325. crossref(new window)

T. J. Chen, Y. C. Chiou, R. T. Lee, Int. J. Mach. Tools Manuf., 49 (2009) 470. crossref(new window)

Y. S. Liao, S. Y. Luo, Wear, 157 (1992) 325. crossref(new window)

H. Tokura, M. Yoshikawa, J. Mater. Sci., 24 (1989) 2231. crossref(new window)

E. Breval, J. Cheng, D. K. Agrawal, J. Am. Ceram. Soc., 83 (2000) 2106.

Y. H. Wang, J. B. Zang, M. Z. Wang, Y. Guan, Y. Z. Zheng, J. Mater. Process. Technol., 129 (2002) 369. crossref(new window)

C. H. Li, H. B. Lu, W. H. Xiong, X. Chen, Surf. Coat. Technol., 150 (2002) 163. crossref(new window)

X. Xu, X. Tie, H. Wu, Int. J. Refract. Met. Hard Mater., 25 (2007) 244. crossref(new window)

X. Yin, I. Gotman, L. Klinger, E. Y. Gutmanas, Mater. Sci. Eng. A 396 (2005) 107. crossref(new window)

E. Y. Gutmanas, I. Gotman, Mater. Sci. Eng. A 157 (1992) 233. crossref(new window)

P. Mogilevsky, E. Y. Gutmanas, I. Gotman, R. Telle, J. Eur. Ceram. Soc., 15 (1995) 527. crossref(new window)

H. Schafer, Chemical Transport Reactions, Sixth ed., Wiley, New York (1964).

I. Mashal, L. Klinger, I. Gotman, E. Y. Gutmanas, Surf. Coat. Technol., 200 (2006) 3561. crossref(new window)

X. H. Chen, H. Wang, Y. M. Liu, M. Fang, Trans. Nonferrous Met. Soc. China, 19 (2009) 1348. crossref(new window)

A. R. Castle, D. R. Gabe, Int. Mater. Rev., 44.2 (1999) 37. crossref(new window)

Y. Zhu, L. Wang, W. Yao, L. Cao, Appl. Surf. Sci., 171 (2001) 143. crossref(new window)

J. Wan, R. Q. Zhang, H. F. Cheung, Comput. Mater. Sci., 23 (2002) 73. crossref(new window)

Y. I. Nikitin, G. A. Petasyuk, Journal of Superhard Materials, 30.1 (2008) 58.

B. Jauregui-Beloqui, J. C. Fernandez-Garcia, A. C. Orgiles-Barcelo, M. M. Mahiques-Bujanda, J. M. Martin-Martinez, J. M. Martin-Martinez, J. Adhes. Sci. Technol., 13 (1996) 695.