JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Electrochemical Migration Phenomenon of the Ni-Cr Seed Layer of Sputtered FCCL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Electrochemical Migration Phenomenon of the Ni-Cr Seed Layer of Sputtered FCCL
Ahn, Woo-Young; Jang, Joong Soon;
  PDF(new window)
 Abstract
As the demand for fine-pitch FPCB (Flexible Printed Circuit Board) increases, so do the number of applications of sputtered FCCL (Flexible Copper Clad Laminate). Furthermore, as the width between the circuit patterns decreases, greater defects are observed in the migration phenomenon. In this study we observed changes in ion migration in real circuit-pattern width using sputtered FCCL. We found that as the applied voltage and residue thickness of the NiCr seeds increase, ion migration occurs faster. If the NiCr seed layer thickens due to a high cathode power and long deposition time while being sputtered, the NiCr will form a residue that quickly becomes a factor for incurring ion migration.
 Keywords
Ion migration;Electrochemical migration;Sputtered FCCL;NiCr seed layer;Circuit short;
 Language
English
 Cited by
 References
1.
X. Zhong, X. Guo, Corrosion Sci., 74 (2013) 71. crossref(new window)

2.
H. He, F. Guo, Electron. Mater. Lett., 8 (2012) 463. crossref(new window)

3.
T. G. Woo, K. W. Seol, Electron. Mater. Lett., 8 (2012) 151. crossref(new window)

4.
N. B. Aguilera, A. Bossche, IEEE Transactions on Device and Materials. Reliability, 13 (2013) 1. crossref(new window)

5.
D. Konno, N. Yoshimura, IEEJ Transactions on Fundamentals and Materials, 133 (2013) 153. crossref(new window)

6.
X. He, M. G. Pecht, IPC APEX EXPO Technical Conference (2012).

7.
J. B. Chyi, G. S. Shen, Packaging, Assembly, & Circuit Technology Conference, ISBN 978-1-4577-1388-0.

8.
H. Li, H. Hanna, Wuhan University Journal of Natural Sciences, 17 (2012) 79. crossref(new window)

9.
V. V. R. Nandigana, N. R. Aluru, Electrochimica Acta, 105 (2013) 514. crossref(new window)

10.
H. Huang, Z. Dong, Corrosion Science, 53 (2011) 3446. crossref(new window)

11.
B. I. Noh, S. B. Jung, Mater Electron., 19 (2008) 952. crossref(new window)

12.
B. Li, D. Badami, Microelectronics Reliability, 44 (2004) 365. crossref(new window)

13.
M. A. Hussain, F. M. Khoshnaw, IEEE 9th VLSI Packaging Workshop of Japan, 12 (2008) 105.

14.
Y. Heng Chen, M. Hsiao, 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 7 (2012) 1.

15.
Konno, Dai, Denki Gakkai Ronbunshi, A Kiso zairy A, 133 (2013) 153.

16.
X. He, M. G. Pecht, IPC APEX EXPO Technical Conference, (2010) 1297.

17.
K. Mitobe, Denki Gakkai Ronbunshi. A, Kiso zairyA. 127 (2007) 335.

18.
D. B. Lee, D. S. Yu, Journal of the Korean Society for Precision Engineering, 9 (2005) 64.

19.
D. B. Lee, D. S. Yu, Korean Society for Precision Engineering Meeting (2004) 180.

20.
"IPC-TM 650 2.6.13 Test Method Manual," Assessment of Susceptibility to Metallic Dendritic Growth. 2215 Sanders Road Northbook, IL 60062-6135.