JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influence of Post-deposition Annealing Temperature on the Properties of GZO/Al Thin Film
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence of Post-deposition Annealing Temperature on the Properties of GZO/Al Thin Film
Kim, Sun-Kyung; Kim, Seung-Hong; Kim, So-Young; Jeon, Jae-Hyun; Gong, Tae-Kyung; Yoon, DaeYoung; Choi, DongYong; Choi, Dong-Hyuk; Son, Dong-Il; Kim, Daeil;
  PDF(new window)
 Abstract
Ga doped ZnO (GZO)/Al bi-layered films were deposited on the glass substrate by RF and DC magnetron sputtering and then vacuum annealed at different temperatures of 100, 200 and for 30 minutes to consider the effects of annealing temperature on the structural, electrical and optical properties of the films. For all depositions, the thicknesses of the GZO and Al films were kept constant at 95 and 5 nm, respectively, by controlling the deposition time. As-deposited GZO/Al bi-layered films showed a relatively low optical transmittance of 62%, while the films annealed at showed a higher transmittance of 81%, compared to the other films. In addition, the electrical resistivity of the films was influenced by annealing temperature and the lowest resistivity of was observed in the films annealed at . Due to the increased carrier mobility, 2.35 of the films. From the experimental results, it can be concluded that increasing the annealing temperature enhanced the optical and electrical properties of the GZO/Al films.
 Keywords
GZO;Al;Annealing temperature;XRD;Figure of merit;
 Language
Korean
 Cited by
1.
열처리 온도에 따른 TiO2/Ag/TiO2 박막의 근적외선 반사 특성 변화,김소영;문현주;김대일;

열처리공학회지, 2015. vol.28. 3, pp.134-138 crossref(new window)
1.
Effect of Annealing Temperature on the Low Emissivity of TiO2/Ag/TiO2 Films, Journal of the Korean Society for Heat Treatment, 2015, 28, 3, 134  crossref(new windwow)
 References
1.
K. T. R. Reddy, R. W. Miles, J. Cryst. Growth, 210 (2000) 516. crossref(new window)

2.
M. Yoshino, W. Wenas, K. Akahas, Jpn. J. Appl. Phys., 32 (1993) 726. crossref(new window)

3.
L. J. Meng, M. P. Dos Santos, Thin Solid Films, 250 (1994) 26. crossref(new window)

4.
D. E. Brodie, E. Dixon, Proc. 12th IEEE Photovoltaic Specialists Conf, New York, (1980) 468.

5.
C. Cheng, J. Ting, Thin Solid Films, 516 (2007) 203. crossref(new window)

6.
F. Wu, L. Fang, Y. J. Pan, K. Zhou, H. B. Ruan, G. B. Liu, C. Y. Kong, Thin Solid Films, 520 (2011) 703. crossref(new window)

7.
Y. Kim, S. Heo, H. Lee, Y. Lee, I. Kim, M. Kang, D. Choi, B. Lee, M. Kim, D. Kim, Appl. Surf. Sci., 258 (2012) 3903. crossref(new window)

8.
B. D. Cullity, Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, (1978) 102-121.

9.
G. Haacke, J. Appl. Phys., 47 (1976) 4086. crossref(new window)

10.
S. Heo, Y. Lee, M. Lee, Y. Kim, Y. Kong, D. Kim, J. Kor. Soc. Heat Treat., 24 (2011) 338.

11.
S. Park, W. Lim, C. Lee, J. Natur. Sci., 18 (1999) 31.

12.
B. Kim, E. Kim, Y. Kim, J. Kor. Ceram. Soc., 43 (2006) 532. crossref(new window)

13.
D. Kim, Displays, 31 (2010) 155. crossref(new window)