JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Comparative Study of CrN Coatings Deposited by DC and Asymmetric Bipolar Pulsed DC Sputtering
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Comparative Study of CrN Coatings Deposited by DC and Asymmetric Bipolar Pulsed DC Sputtering
Chun, Sung-Yong; Baek, Ji-Won;
  PDF(new window)
 Abstract
The purpose of this comparative study was to investigate the properties of chromium nitride coatings deposited by asymmetric bipolar pulsed DC sputtering and DC sputtering system. Oscilloscope traces of the I-V waveforms indicate high power and high current density outputs during the asymmetric bipolar pulsed mode. The grain size decreases with decreasing duty cycle. The duty cycle has a strong influence not only on the microstructural properties but also on the mechanical properties of chromium nitride coatings. Comparing with the continuous DC sputtering, the chromium nitride coatings prepared by pulsed DC asymmetric bipolar process also exhibit better surface roughness.
 Keywords
Pulsed DC;Bipolar;Nanocrystalline;Chromium nitride;Microstructure;
 Language
Korean
 Cited by
1.
Bipolar Pulse Bias Effects on the Properties of MgO Reactively Deposited by Inductively Coupled Plasma-Assisted Magnetron Sputtering,;

Applied Science and Convergence Technology, 2014. vol.23. 3, pp.145-150 crossref(new window)
1.
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings, Journal of the Korean institute of surface engineering, 2016, 49, 4, 376  crossref(new windwow)
2.
A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering, Journal of the Korean institute of surface engineering, 2015, 48, 4, 136  crossref(new windwow)
3.
Bipolar Pulse Bias Effects on the Properties of MgO Reactively Deposited by Inductively Coupled Plasma-Assisted Magnetron Sputtering, Applied Science and Convergence Technology, 2014, 23, 3, 145  crossref(new windwow)
 References
1.
G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, J. Y. Zhang, Mater. Sci. Eng., A 460-461 (2007) 301. crossref(new window)

2.
E. Fornies, R. Escobar Galindo, O. Sanchez, J. M. Albella, Surf. Coat. Tech., 200 (2006) 6047. crossref(new window)

3.
C. W. Zou, H. J. Wang, M. Li, C. S. Liu, L. P. Guo, D. J. Fu, Vacuum., 83 (2009) 1086. crossref(new window)

4.
J. Lin, W. D. Sproul, J. J. Moore, Surf. Coat. Tech., 206 (2012) 2474. crossref(new window)

5.
M. S. Kim, S. M. Kang, D. W. Kim, S. H. Kim, J. Kor. Inst. Surf. Eng., 42 (2009) 272. crossref(new window)

6.
J. M. Park, S. H. Jeong, J. S. Kim, S. M. Park, Y. Z. Lee, J. KSTLE., 24 (2008) 250.

7.
S. Y. Chun, J. Kor. Inst. Surf. Eng., 44 (2011) 179. crossref(new window)

8.
H. D. Ko, C. S. Lee, W. P. Tai, S. J. She, Y. S. Kim, J. Kor. Ceram. Soc., 41(6) (2004) 476. crossref(new window)

9.
J. H. Kim, J. K. Lee, J. H. Ahn, J. Kor. Ceram. Soc., 38(1) (2001) 61.

10.
J. S. Cherng, D. S. Chang, Vacuum., 84 (2010) 653.

11.
J. W. Lee, S. K. Tien, Y. C. Kuo, J. Elec. Mater., 34 (2005) 1484. crossref(new window)

12.
B. D. Cullity, S. R. Stock, Element of X-ray Diffraction, Prentice-Hall Inc., 3rd (2001) 167.

13.
S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F. Milde, Surf. Coat. Tech., 61 (1993) 331. crossref(new window)

14.
Harish C. Barshilia, K. Yogesh, K. S. Rajam, Vacuum., 83 (2009) 427.

15.
I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Tech., A 21 (2003) 774.

16.
J. Lin, Z. L. Wu, X. H. Zhang, B. Mishra, J. J. Moore, W. D. Sproul, Thin Solid Films., 517 (2009) 1887. crossref(new window)

17.
I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgern, J. E. Green, Thin Solid Films., 169 (1989) 299. crossref(new window)

18.
Harish C. Barshilia, K. S. Rajam, Surf. Coat. Tech., 201 (2006) 1827. crossref(new window)

19.
S. Kim, D. M. Kim, S. Kang, H. J. Kim, J. Kor. Ceram. Soc., 46(2) (2009) 116. crossref(new window)