Advanced SearchSearch Tips
A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering
Chun, Sung-Yong; Lee, Tae Yang;
  PDF(new window)
The paper presents the comparative results of TiAlN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than dc prepared TiAlN coatings. Moreover residual stress of pulsed sputtered TiAlN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.
Pulsed DC Sputtering;TiAlN;Asymmetric Bipolar;Duty cycle;Pulse frequency;
 Cited by
A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering, Journal of the Korean institute of surface engineering, 2015, 48, 4, 136  crossref(new windwow)
S. Y. Yoon, Y. B. Lee, K.H. Kim J. Kor. Inst. Surf. Eng.. 35 (2002) 193.

M. S. Kim, J. H. Kho, S. H. Kim, J. Kor. Inst. Surf. Eng., 43 (2010) 278. crossref(new window)

S. Hogmark, S. Jacobson, M. Larsson, Wear, 246 (2000) 20. crossref(new window)

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, Optics Express, 14 (2006) 1951 crossref(new window)

J. L. Gomez, O. Tigli, J. Mater. Sci., 48 (2013) 612. crossref(new window)

A. Moustaghfir, E. Tomasella, A. Rivaton, B. Mailhot, M. Jacquet, J. L. Gardette, Surf. Coat. Tech., 180-181 (2004) 642. crossref(new window)

J. Baumann, M. Markert, T. Werner, A. Ehilich, M. Rennau, Ch. Kaufmann, Micro Electron. Eng., 37 (1997) 229.

D. H. Yu, C. Y. Wang, X. L. Cheng, F. L. Zhang, Appl. Surf. Sci., 255 (2008) 1865. crossref(new window)

S. Y. Tan, X. H. Zhang, X. J. Wu, F. Fang, J. Q. Jiang, Thin Solid Films, 519 (2011) 2116. crossref(new window)

J. Sellers, Surf. Coat. Tech., 98 (1998) 1245. crossref(new window)

G. S. Kim, B. S. Kim, S. Y. Lee, J. Kor. Inst. Surf. Eng., 38 (2005) 207.

H. C. Barshilia, K.S. Rajam, Surf. Coat. Tech., 201 (2006) 1827. crossref(new window)

K. Bobzin, E. Lugscheider, M. Maes, P. Immich, S. Bolz, Thin Solid Films, 515 (2007) 3681 crossref(new window)

S. Y. Chun, J. W. Baek, J. Kor. Inst. Surf. Eng.. 47 (2014) 100.

I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Tech. A, 21 (2003) 774.

N. Maazi, N. Rouag, J. Cryst, Growth, 243 (2002) 361. crossref(new window)

H. C. Barshilia, K. Yogesh, K. S. Rajam, Vacuum, 83 (2009) 427.

M. Ahlgren, H. Blomqvist, Surf. Coat. Tech., 200 (2005) 157. crossref(new window)

I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgern, J. E. Green, Thin Solid Films, 169 (1989) 299. crossref(new window)

C. P. Constable, D. B. Lewis, J. Yarwood, W. D. Munz., Surf. Coat. Tech., 184 (2004) 291-297. crossref(new window)

D. W. Hoffmann, Thin Solid Films 107 (1983) 353-358. crossref(new window)

A. Pan, J. E. Greene, Thin Solid Films 78 (1981) 25-34 crossref(new window)

L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, J. Appl. Phys., 61 (1987) 552. crossref(new window)

J. M. Lee, C. J. Lee, K. H. Lee, B. M. Kim, Trans. Nonferrous Met. Soc. China, 22 (2012) 585. crossref(new window)

S. Kim, D. M. Kim, S. Kang, H. J. Kim, J. Kor. Ceram. Soc., 46 (2009) 116. crossref(new window)