JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature
Lee, Seok-Ryeol; Lee, Kyong-Taik; Kim, Jae-Yeal; Yang, Myoung-Su; Kang, In-Byeong; Lee, Ho-Seong;
  PDF(new window)
 Abstract
We investigated the structural, electrical and optical characteristics of IGZO thin films deposited by a room-temperature RF reactive magnetron sputtering. The thin films deposited were annealed for 2 hours at various temperatures of 300, 400, 500 and and analyzed by using X-ray diffractometer, transmission electron microscopy, atomic force microscope and Hall effects measurement system. The films annealed at were found to be crystallized and their surface roughness was decreased from 0.73 nm to 0.67 nm. According to XPS measurements, concentration of oxygen vacancies were decreased at . Optical band gap were increased to 3.31eV. The carrier concentration and Hall mobility were sharply increased at 600oC. Our results indicate that the IGZO films deposited at a room temperature can show better thin film properties through a heat treatment.
 Keywords
IGZO film;R.F. magnetron sputtering;annealing;
 Language
Korean
 Cited by
 References
1.
H. Hosono., J. Non-cryst. Solids., 532 (2006) 851.

2.
K. Nomura, A. Takagi. et al., Jpn. J. Appl. Phys., 45 (2006) 4303. crossref(new window)

3.
H. Yabuta, M. Sano. et al., Appl. Phys. Lett., 89 (2006) 112123. crossref(new window)

4.
W. T. Chen, S. Y. Lo. et al., IEEE Electron Dev. Lett., 32 (2011) 1552. crossref(new window)

5.
J. S. Park, J. K. Jeong. et al., Appl. Phys. Lett., 92 (2008) 072104. crossref(new window)

6.
D. H. Kang, H. Lim. et al., Appl. Phys. Lett. 90 (2007) 192101. crossref(new window)

7.
K. Ide, Y. Kikuchi. et al., Thin Solid Films, 520 (2012) 3787. crossref(new window)

8.
H. S. Shin, B. D. Ahn. et al., J. Inform. Display, 12 (2011) 209. crossref(new window)

9.
S. H. Bae, I. H. Yoo. et al., J. Kor. Ceram. Soc. 47 (2010) 329. crossref(new window)

10.
C. C. Lo, T. E. Hsieh. et al., ESC Transactions. 28 (2010) 131.

11.
D. H. Tahir, E, K. Lee. et al., Surf. Interface Anal, 42 (2010) 906. crossref(new window)

12.
Y. S. Lee, Z. M. Dai. et al., Ceramics International 385 (2012) S595.

13.
C. H. Wu, K. M. Chang. et al., ECS Transactions 45 (2012) 189.

14.
M. S. Kim, D. Y. Kim. et al., J. KIEEME 23 (2010) 961

15.
H. S. Jeon, S. W. Na, et al., J. Electrochem. Soc., 158 (2011) 158.

16.
M. J. Gader, T. L. Alford. et al., Appl. Phys. Lett., 99 (2011) 051901. crossref(new window)

17.
M. R. Moon, S. W. Na. et al., Surf. Interface Anal, 44 (2012) 1431. crossref(new window)

18.
T. T. Trinh, V. D. Nguyen. et al., Semicond. Sci. Technol. 26 (2011) 085012. crossref(new window)

19.
B. D. Ahn, H. S. Shin. et al., Jpn. J. Appl. Phys., 48 (2009) 03B019.