Advanced SearchSearch Tips
Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method
Park, Youngbin; Nam, Giwoong; Park, Seonhee; Moon, Jiyun; Kim, Dongwan; Kang, Hae Ri; Kim, Haeun; Lee, Wookbin; Leem, Jae-Young;
  PDF(new window)
ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.
Zinc oxide;Nanostructure;Electrodepositon;Photoluminescence;X-ray diffraction;
 Cited by
S. Kim, G. Nam, K. G. Yim, J. Lee, Y. Kim, J.-Y. Leem, Electron. Mater. Lett., 9 (2013) 293. crossref(new window)

S. Kim, H. Park, G. Nam, H. Yoon, B. Kim, I. Ji, Y. Kim, I. Kim, Y. Park, D. Kang, J.-Y. Leem, Electron. Mater. Lett., 10 (2014) 81. crossref(new window)

Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett., 90 (2003) 185502. crossref(new window)

H. K. Lee, M. S. Kim, J. S. Kim, Nanotechnology, 22 (2011) 445602. crossref(new window)

Kenry, C. T. Lim, Prog. Mater Sci., 58 (2013) 705. crossref(new window)

X. Wang, C. J. Summers, Z. L. Wang, Nano Lett., 4 (2004) 423. crossref(new window)

B. Pardhan, S. K. Batabyal, A. J. Pal, Sol. Energy Mater. Sol. Cells, 91 (2007) 769. crossref(new window)

R. Konenkamp, R. C. Word, C. Schlegel, Appl. Phys. Lett., 85 (2004) 6004. crossref(new window)

H. Haga, F. Katahira, H. Watanabe, Thin Solid Films, 343 (1999) 145.

J. H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth, 226 (2001) 493. crossref(new window)

B. Xue, Y. Liang, L. Donglai, N. Eryong, S. Congli, f. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, S.Xiaosong, Appl. Surf. Sci., 257 (2011) 10317. crossref(new window)

M. Lzaki, S. Watase, H. Takahashi, Appl. Phys. Lett., 83 (2003) 4930. crossref(new window)

M. Tolosa, L. Damonte, H. Brine, H. Bolink, M. Fenollosa, Nanoscale Res. Lett., 8 (2013) 135. crossref(new window)

Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z. Wang, Y. Hu, J. Solid State Chem., 179 (2006) 1984. crossref(new window)

Y. Zhang, G. Du, B. Liu, H. Zhu, T. Yang, W. Li, D. Liu, S. Yang, J. Cryst. Growth, 262 (2004) 456. crossref(new window)

S. Kim, M. S. Kim, G. Nam, J.-Y. Leem, Electron. Mater. Lett., 8 (2012) 445. crossref(new window)

A. Take, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt, Phys. Rev. B, 70 (2004) 195207. crossref(new window)

S. Baek, S. Lim ; Thin Solid Films, 517 (2009) 4560. crossref(new window)

Z. Wang, X.-F. Qian, J. Yin, Z.-K. Zhu, J. Solid State Chem., 177 (2004) 2144. crossref(new window)