Advanced SearchSearch Tips
Effects of Growth Temperature and Time on Properties of ZnO Nanostructures Grown by Electrodeposition Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Growth Temperature and Time on Properties of ZnO Nanostructures Grown by Electrodeposition Method
Park, Youngbin; Nam, Giwoong; Park, Seonhee; Moon, Jiyun; Kim, Dongwan; Kang, Hae Ri; Kim, Haeun; Lee, Wookbin; Leem, Jae-Young;
  PDF(new window)
The electrodeposition of ZnO nanorods was performed on ITO glass. The optimization of two process parameters (solution temperature and growth time) has been studied in order to control the orientation, morphology, density, and growth rate of ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results of the structural property show that hexagonal ZnO nanorods with wurtzite crystal structures have a c-axis orientation, and higher intensity for the ZnO (002) diffraction peaks. Furthermore, the nanorods length increased with increasing both the solution temperature and the growth time. The results of the optical property show a strong UV (3.28 eV) peaks and a weak visible (1.9~2.4 eV) bands, the intensity of UV peaks was increased with increasing both the solution temperature and the growth time. Especially, the UV peak for growth of nanorods at blue-shift than different temperatures.
Zinc oxide;Nanostructure;Electrodepositon;Photoluminescence;X-ray diffraction;
 Cited by
S. Fujihara, C. Sasaki, and T. Kimura, Appl. Surf. Sci., 180 (2001) 341. crossref(new window)

M. Ohyama ; J. Am. Ceram., 81 (1998) 1622.

D. Bao, H. Gu, and A. Kuang ; Thin Solid Films, 312 (1998) 37. crossref(new window)

J. F. Chang, W. C. Lin, and M. H. Hon, Appl. Surf. Sci., 183 (2001) 18. crossref(new window)

E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M. E. V. Costa, M. H. Godinho, P. L. Almeida, J. P. Borges, and R. Martins ; Adv. Eng. Mater., 4 (2002) 610. crossref(new window)

Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett., 90 (2003) 185502. crossref(new window)

H. K. Lee, M. S. Kim, and J. S. Kim, Nanotechnology, 22 (2011) 445602. crossref(new window)

Kenry, and C. T. Lim ; Prog. Mater Sci., 58 (2013) 705. crossref(new window)

X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett., 4 (2004) 423. crossref(new window)

B. Pardhan, S. K. Batabyal, and A. J. Pal, Sol. Energy Mater. Sol. Cells, 91 (2007) 769. crossref(new window)

R. Konenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett., 85 (2004) 6004. crossref(new window)

Q. X. Zhao, P. Klason, and M. Willander, Appl. Phys. A Mater. Sci. Process., 88 (2007) 27. crossref(new window)

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, Nathan, Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater., 12 (2002) 323. crossref(new window)

Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett., 396 (2004) 21. crossref(new window)

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett., 80 (2002) 4232. crossref(new window)

B. Liu, and H. C. Zeng, J. Am. Chem. Soc., 125 (2003) 4430. crossref(new window)

B. Xue, Y. Liang, L. Donglai, N. Eryong, S. Congli, f. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, and S. Xiaosong, Appl. Surf. Sci., 257 (2011) 10317. crossref(new window)

M. Lzaki, S. Watase, and H. Takahashi, Appl. Phys. Lett., 83 (2003) 4930. crossref(new window)

M. Tolosa, L. Damonte, H. Brine, H. Bolink, and M. Fenollosa, Nanoscale Res. Lett., 8 (2013) 135. crossref(new window)

A. Goux, T. Pauporte, J. Chivot, and D. Lincot, Electrochim. Acta, 50 (2005) 2239. crossref(new window)

M. Guo, C. Yang, M. Zhang, Y. Zhang, T. Ma, X. Wang, and X. Wang, Electrochim. Acta, 53 (2008) 4633. crossref(new window)

L. Wu, Y. Wu, W. Lu, H. Wei, and Y. Shi, Appl. Surf. Sci., 252 (2005) 1436. crossref(new window)